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Empirical modeling of production decisions of heterogeneous farmers with random 

parameter models 

 

Abstract 

Evidences of the effects of unobserved heterogeneity in micro-econometric models are now 

pervasive in many applied economics fields. This article investigates this issue for agricultural 

production choice models. Farms’ and farmers’ unobserved heterogeneity can be accounted for in 

micro-econometric agricultural production choice models by relying on available modeling and 

inference tools. The random parameter (RP) framework allows achieving this goal in a fairly 

flexible way. This modeling framework has already been successfully used in numerous empirical 

studies covering many topics. It simply considers RP versions of standard models. Extensions of 

the Expectation-Maximization algorithms have been specifically developed in the computational 

statistics literature for estimating RP models. They appear to be well suited for large statistical 

models such as micro-econometric agricultural production choice models. The estimation of a RP 

multi-crop econometric model shows that unobserved heterogeneity matters in a sample of French 

farmers specialized in cash grain production covering a relatively small geographical area. The 

key parameters of this RP model significantly vary across farms. Simulation results obtained from 

the estimated RP model confirm that the sampled farmers’ choices respond heterogeneously to 

homogenous economic incentives. Ignoring this heterogeneity impacts both the distribution and 

the magnitude of the simulated effects.  

 

Keywords: Unobserved heterogeneity, random parameter models, agricultural production choices, 

policy simulation, SEM algorithms 
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Modélisation empirique des décisions de productions d’agriculteurs hétérogènes à l’aide de 

modèles à paramètres aléatoires 

 

 

Résumé  

Les preuves d’effets de l’hétérogénéité inobservée sont désormais omniprésentes dans de 

nombreux champs de l’économie appliquée. Nous nous intéressons à cette question dans le cadre 

des modèles de choix de production agricole. L’hétérogénéité inobservée des exploitations et des 

exploitants agricoles peut être prise en compte dans les modèles micro-économétriques de choix 

de production agricole en utilisant des outils de modélisation et d’inférence disponibles, basés sur 

des modèles à paramètres aléatoires (PA). Ce type d’approche a déjà été utilisé avec succès dans 

de nombreuses études empiriques sur différent sujets. Elle consiste simplement à considérer des 

versions à PA de modèles standards. Des extensions d’algorithmes EM (Expectation 

Maximization) ont été spécifiquement développées dans la littérature statistique pour estimer les 

modèles à PA et sont tout à fait adaptées aux modèles statistiques de grande dimension comme les 

modèles micro-économétriques de choix de production. L’estimation d’un modèle économétrique 

pluri-cultures à PA montre ici que l’hétérogénéité inobservée est vraiment importante dans un 

échantillon d’agriculteurs français spécialisés en grandes cultures dans une zone géographique 

relativement restreinte. Les paramètres clés de ce modèle à PA varient significativement d’une 

exploitation à l’autre. Les résultats de simulation obtenus à partir du modèle à PA estimé 

confirment que les agriculteurs de l’échantillon répondent de façon hétérogène à des incitations 

économiques homogènes. Le fait d’ignorer cette hétérogénéité impacte à la fois la distribution et 

l’ampleur des effets simulés. 

 

Mots-clés : Hétérogénéité inobservée, modèles à paramètres aléatoires, choix de production 

agricole, simulation de politique, algorithmes SEM  

 

Classifications JEL : Q12, C13, C15 
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Empirical modeling of production decisions of heterogeneous farmers with random 

parameter models 

 

1. Introduction 

Farmers face different production conditions due to heterogeneous soil quality or usual climatic 

conditions across space. They also own different machineries and different wealth levels. Farmers 

also differ because of their various experiences, educational levels or skills, as well as because 

they may have different objectives with respect to income risk or with respect to the leisure versus 

labor trade-off. These heterogeneity sources are likely to have important impacts on farmers’ 

production choices. But to control for the effects of these heterogeneity sources is difficult in 

practice. Potential heterogeneity sources are numerous and many of them are not suitably 

described in the data sets usually used by agricultural economists. Empirical investigators 

generally rely on a few variables – e.g. farms’ size and location; farmers’ age and education; and, 

when available, rough soil quality indices – to control for the effects of many heterogeneity 

sources on farmers’ production choices. As a matter of fact, many important heterogeneity sources 

are unobserved from an empirical modeling perspective. 

Evidences of the effects of unobserved heterogeneity in micro-econometric models are now 

pervasive in many applied economics fields. During the last two decades applied micro-

econometricians have developed tools to estimate models explicitly accounting for the effects of 

unobserved heterogeneity on economic choices. These tools have already been successfully used 

in several applied economics domains. E.g., following the pioneering work of McFadden and 

Train (2000) and of Greene and Hensher (2003), econometric discrete choice models accounting 

for decision makers’ preference heterogeneity are now routinely used in applied studies. Empirical 

studies highlighting the role of unobserved heterogeneity effects in econometric models can be 

found, e.g., in labor economics (see, e.g., Heckman, 2001; Heckman and Vitlacyl, 2007; Angrist 

and Pischke, 2009), in empirical industrial organization (see, e.g., Ackerberg et al., 2007) or in 

trade economics (see, e.g., Keane, 2009; Eaton et al., 2011). Importantly, the effects of unobserved 

heterogeneity – e.g. firms’ latent productivity, consumers’ preferences or workers’ unobserved 

abilities – are often shown to affect how the modeled choices or outcomes respond to interest 

variables. Consumers value differently a given good or firms respond heterogeneously to 

homogenous economic incentives.  

Our view is that similar heterogeneity features characterize agricultural production choices. Farms 

and farmers are heterogeneous and this heterogeneity is likely to affect the way farmers respond 
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to, e.g., economic incentives. However, the micro-econometric agricultural production choice 

models found in the literature largely ignore such impacts of unobserved heterogeneity.  

The objectives of this article are twofold. First, we show that tools recently developed by micro-

econometricians and statisticians allow the specification and estimation of econometric 

agricultural production choice models accounting for farms’ and farmers’ unobserved 

heterogeneity in a fairly flexible way. To this end we simply use random parameter (RP) versions 

of standard agricultural production choice models. This modeling approach has been used 

successfully in other applied econometric fields and has several advantages: such models are easy 

to interpret. Tools developed in the computational statistics literature, the so-called Stochastic 

Expectation-Maximization (SEM) algorithms, appear to be convenient for estimating RP 

agricultural production choice models. Estimated RP models can easily be used for constructing 

simulation models defined as a sample of farm models with “statistically calibrated” farm specific 

parameters. 

Second, we aim at showing that unobserved heterogeneity effects significantly matter in empirical 

agricultural production choice models. To this end we supplement our factual arguments by 

presenting estimation and simulation results. These results are obtained from a RP multi-crop 

econometric model estimated with a panel data set of French cash grain producers. Obtained 

results demonstrate that unobserved heterogeneity matters for the modeling of micro-economic 

agricultural production choices, even within a small area. Key parameters of farmers’ choice 

models exhibit significant variability across farmers. We then use the estimated RP model for 

“statistically calibrating” a multi-crop simulation model based on the considered farm sample. 

Simulation results based on this model and on counterparts of this model with fixed or partially 

fixed parameters are finally produced for comparison purpose. They confirm that the 

heterogeneity of key choice parameters significantly impacts simulation results. 

Means commonly employed by agricultural production economists to cope with unobserved 

heterogeneity of farms and farmers depend on their modeling approaches and purposes. 

Mathematical programming models used to analyze agricultural supply responses to economic 

policies (or other determinants of farmers’ choices) are usually built by considering sets of farms, 

of small regions or of farm-types. A mathematical programming model is calibrated for each 

element of the considered set of “farms”. This disaggregated calibration procedure allows 

controlling for farms’ and farmers’ unobserved heterogeneity. Of course the lack of statistical 

background of the standard calibration procedures is often pointed out as an important limitation 

of agricultural supply mathematical programming models (Howitt, 1995; Heckeleï and Wolff, 
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2003; Heckeleï et al., 2012). However, simulations provided by these models appear to be highly 

valued by decision-makers. These provide disaggregated results with respect to the simulated 

effects of agricultural policy measures on farmers’ choices across more or less large geographical 

areas. 

The ability of micro-econometric models of agricultural production choices to account for farms’ 

and farmers’ heterogeneity is much more limited in general. Standard specifications of 

econometric agricultural production choice models can be defined as a sum of a deterministic part 

and of a vector of random error terms. In these models, farmers’ responses to economic (or other) 

incentives are governed by the deterministic part – i.e. by a few statistically estimated parameters 

and a few control variables – and the effects of farms’ and farmers’ unobserved heterogeneity are 

“pushed” into additively separable error terms. This often leads to simulation results which are 

unrealistically homogeneous across farms. 

We simply consider RP versions
1
 of standard production choice models. Hence we use RP models 

with standard functional forms but with farmer specific parameters. Standard data sets, even panel 

data sets, do not permit direct estimation of the individual parameters. The objective of the 

estimation is thus to characterize the probability distribution of the model parameters across the 

considered farmer population. These estimates are of primary interest. First, they allow 

characterizing and investigating farmers production choices under fairly general assumptions. 

Second, estimated RP models can also be used to construct simulation models in which a 

parameter vector is “statistically calibrated” for each sampled farmer. As such they may provide 

reliable alternatives to the calibrated mathematical programming models usually used for 

investigating the effects of agricultural policy instruments. 

RP models, or mixed models, are routinely (and successfully) used for discrete choice modeling 

(see, e.g., Train, 2009), for evaluating public policies (Heckman and Vitlacyl, 2007; Angrist and 

Pischke, 2009) or for modeling firm choices (see, e.g., Keane, 2009). But, to our knowledge, they 

have not been used in agricultural production economics yet.
2
  

                                                 
1
 An alternative approach relies on the introduction in the model of latent variables aimed at representing some 

unobserved heterogeneity factors, such as productivity indices (Eaton et al., 2011) or ability indices (Caponi, 2011). 

2
 The modeling framework used by Oude Lansink (1999) also relies on farmer specific parameters. But it significantly 

differs from ours in two important respects. First, Oude Lansink seeks to estimate the parameters of each sampled 

farmer whereas we aim at estimating the distribution of these parameters across the farmer population represented by 

our sample. Second, we adopt the classical inference framework. Oude Lansink takes advantage of the Maximum 
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Indeed, the practical estimation of RP models is often challenging for three main reasons: (a) the 

integration of the estimation objective function over the joint probability distribution of the 

random parameters, i.e. the mixing distribution of the RP or mixed model, when this distribution 

is continuous as it is assumed here, (b) the complexity of the resulting estimation objective 

function and/or (c) the dimension of the estimation problem. Econometricians mostly use 

Simulated Maximum Likelihood (SML) estimators
3
 for estimating RP models continuous mixing 

distribution. But the practical implementation of SML estimators is difficult for mixed multi-crop 

models. The aforementioned problems are magnified because these models consider relatively 

large sets of interrelated production choices and outcomes. 

Stochastic Expectation-Maximization (SEM) algorithms (see, e.g., McLachlan and Krishnan, 

2008) appear to be interesting alternative estimation tools for RP multi-crop models. SEM 

algorithms are extensions of the (deterministic) Expectation-Maximization (EM) algorithms 

proposed by Dempster et al. (1977) and, as such, they are particularly well-suited for maximizing 

likelihood functions involving missing variables such as random parameters. They are specifically 

designed for computing estimators (which are asymptotically equivalent to SML estimators) for 

mixed parametric models with continuous mixing distributions. They are well suited for 

estimating multi-crop models because they allow, at least to some extent, taking advantage of the 

specific structure of these models. Also, numerous SEM algorithms have been proposed in the 

computational statistics literature, offering a rich toolbox for estimating mixed models. The 

algorithm used for our empirical application was designed by combining the features of SEM 

algorithms proposed by Delyon et al. (1999), by Meng and Rubin (1993), by Caffo et al. (2005) 

and by Train (2008; 2009). This algorithm was designed so as to be relatively easy to code and to 

monitor. 

The general features of RP models are presented in the first section. The second section presents 

the multi-crop econometric model that we consider in order to investigate the advantages of 

accounting for unobserved heterogeneity in agricultural production choice models. Estimation 

issues are discussed in the third section. The estimation results and their interpretations are 

provided in the fourth section.  

 

                                                                                                                                                                

Entropy approach for solving ill-conditioned problems: his estimation/calibration problem is under-identified in the 

classical sense.  

3
 Or, but less frequently, Method of Simulated Moments estimators. Such estimators are more often used for models 

with latent heterogeneity variables (see, e.g., Eaton et al., 2011; Caponi, 2011). 
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2. Unobserved heterogeneity and random parameter models 

This section presents the main features of RP models. It also introduces important elements to be 

used in the presentation of the estimation issues. The multi-crop model considered in the empirical 

section serves as an example. Its estimation makes use of a panel data set with observations 

indexed by 1,...,i N  for farms and by 1,...,t T  for years.
4
 We consider short run production 

choices of farmers – i.e. an acreage (share) choice system and a yield supply system – and we take 

for granted that farmers’ choices rely on heterogeneous determinants.  

A RP model is composed of two parts. The first part, the “behavioral model”, formally describes 

the process of interest and defines its statistical characteristics conditional on the considered 

random parameters and on the exogenous variables. Our micro-econometric multi-crop model 

considers a sequence of acreage share vectors, ( : 1,..., )i it t T s s  where 
,( : )it k its k s K , and 

the corresponding sequence of yield level vectors, ( : 1,..., )i it t T y y  where 
,( : )it k ity k y K . 

The term K  denotes the considered crop set with {1,..., }KK . These choices and outcomes are 

simultaneously modeled, with ( : 1,..., )i it t T c c  where ( , )it it itc y s . The second part of the 

model defines the distribution characteristics of the random parameters conditionally on the 

exogenous variables. 

 

2.1.  Behavioral model and “kernel” likelihood function 

The equation 

 ( , ; , )it it it ic r z e λ q  (1) 

describes the acreage choices and yield levels itc  as a known response function r to ( , )it itz e , the 

determinants of these production choices and outcomes. The term itz  contains price and climatic 

variables. It is observed by the econometrician. The term ite  contains the unobserved determinants 

of itc . The response function r is parameterized by a fixed parameter vector λ  and a farmer 

specific parameter vector iq . Equation (1) describes how the choices of farmer i and their 

outcomes, itc , are determined by ( , )it itz e  up to the characteristics of this farmer and of his farm, 

                                                 
4
 If panel data sets are not necessary for estimating RP models, identification of the probability distribution of the farm 

specific parameters is greatly facilitated with multiple observations of the sampled farms. 
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iq . This equation can be any agricultural production choice model where part of the usual fixed 

parameters is replaced by farmer specific parameter vector 
iq . 

In a short run production choice context the random parameter vector 
iq  mainly captures the 

effects of the farms’ natural or quasi-fixed factor endowments, of the production technologies used 

by the farmer and of farmers’ characteristics. Our application considers short-run crop production 

choices and relies on a short panel data set, i.e. with 4T  . Since farms and farmers’ production 

technology generally evolves slowly over time, we assume that the parameters 
iq  of the 

production choice model are constant during the considered time period. 

Importantly, specification of the role of 
iq  in the model of 

itc  depends on how unobserved 

heterogeneity effects are expected to affect farmers’ choices and outcomes. Standard panel data 

models generally assume that the effects of iq  and of ite  are additively separable in r.
5
 In this case 

the so-called “individual effect” iq  does not affect the effect of itz  on itc , implying relatively 

homogeneous responses of itc  to changes in itz . Keane (2009) highlights a basic trade-off related 

to this issue. Econometric models with additively separable random terms, i.e. error or parameters, 

are relatively easily estimated without specifying the parametric distribution of the error term. But 

standard “individual effect” models are unsuitable when the effect of itz  on itc  actually depends 

on unobserved characteristics of farmer i or of its farm.
6
 The RP framework allows for interactions 

between itz  and iq  in ( , ; , )it it ir z e λ q . However the estimation of RP models appears to be difficult 

without parametric assumptions on the probability distribution of the random terms ( , )it ie q . It 

remains uneasy even under such assumptions. 

Keane (2009) argues that the use of fully parametric mixed models and of relatively involved 

inference tools is a reasonable price for buying the opportunity to introduce rich unobserved 

heterogeneity effects in micro-econometric models. Of course, this trade-off is an empirical issue 

and is likely to significantly depend on the modeled processes. Our viewpoint is that the empirical 

evidences accumulated in other applied economics fields suggest that it is worth investigating for 

agricultural production choice modeling. This is the main topic of this article with a specific focus 

on the effects of unobserved heterogeneity on farmers’ responses to economic incentives. 

                                                 
5
 E.g. they assume that 0( , ; , ) ( ; )it it i it i it  r z e λ q r z λ q e  for some function 0r . 

6
 I.e. when ( , ; , )it it i



z
r z e λ q  actually depends on iq . 
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Equation (1) is completed by statistical assumptions in order to define the “behavioral model”. It 

is assumed here that ( , )it iz q ,  and 
ite  are independent. This assumption is restrictive but it is 

standard, at least for reduced form models where 
itz  describes external factors – such as market 

prices or climatic events – affecting 
itc . The random parameter 

iq  is assumed to capture the 

persistent unobserved characteristics of farm/farmer i affecting the choice and outcome variable 

itc . The term 
ite  is assumed to represent the effects of idiosyncratic shocks on 

itc , i.e. 
ite  basically 

is a “standard” error term.  

We also assume that the probability density function of 
ite  is known and parameterized by ψ , a 

parameter vector to be estimated. The probability density function of 
ite  and equation (1) allow 

computing ( | , ; )it it if c z q μ , the probability density function of itc  conditional on ( , )it iz q  

parameterized by ( , )μ λ ψ . The term ( | , ; )it it if c z q μ  defines the “kernel”
7
 likelihood function at 

μ  of the parametric RP model of itc . 

Equation (1) and the independence assumptions described above define a “behavioral model” 

which can be used with cross-section data. With panel data additional assumptions are required in 

order to describe the potential dynamic features of the considered choices. In the simplest case, itz  

and ise  are independent conditionally on iq  for any pair of years ( , )s t  and the ite  terms are 

independent across t. These assumptions imply that equation (1) describes a static process 

repeated for 1,...,t T . 

These assumptions are assumed to hold in our empirical application which deals with cash crop 

short run production choices and outcomes. The dynamic features of cash crop production are 

mostly due to crop rotations. Such dynamic effects can be suitably approximated by farm specific 

parameters such as iq  when farmers base their production choices on stable rotation schemes. 

Short run production choices are repeated each year and follow the same process as long as the 

production technology, crop rotation schemes included, and the quasi-fixed factor endowment do 

not change. Under the assumptions given above, the joint density of the vector ic  conditional on 

( , )i iq z , where 1( ,..., )i i iTz z z , is given by: 

 
1

( | , ; ) ( | , ; )
T

i i i it it it
f f


c z q μ c z q μ

 

(2) 

                                                 
7
 According to Train’s (2008) terminology 
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Of course, farmers’ choices and outcomes are statistically linked across time due to their relying 

on the same parameter vector 
iq . But these choices and outcomes are assumed to be independent 

across time conditionally on 
iq . 

 

2.2. Mixing probability distribution 

The second part of a parametric RP model describes the probability distribution of the farmers’ 

specific parameters 
iq  conditionally on the observed variables 

iz . It is assumed here that 
iz  and 

iq  are independent. The exogenous variable vector 
itz  contains exogenous determinants of the 

production choices and outcomes, i.e. prices and climatic conditions, which mostly vary across 

time. Let ( ; )ih q η  the probability density function of iq . This function is defined up to the 

parameter vector η  to be estimated. The probability distribution of iq  describes the distribution of 

iq  across the considered famers’ population. Statistical estimates of η  allow the investigation of 

the distribution of the random parameter iq . These estimates can be used to test the empirical 

relevance of the RP specification by checking whether iq  actually exhibits statistically significant 

variability or not. Estimates of η  can also be used to interpret the empirical content of the iq  

terms. E.g., investigation of the statistical relations among the elements of iq  may point out some 

sources of unobserved heterogeneity.  

Of course the choice of the “mixing” probability distribution function, i.e. the parametric family of 

the probability distribution of iq , is crucial to suitably capture the unobserved heterogeneity 

effects in the considered model. Being related to unobserved variables, this choice basically is an 

empirical issue. It is usually based on trials with different parametric models.
8
 

                                                 
8
 Using flexible parametric models, e.g. finite discrete mixtures of Gaussian models, or non parametric models 

appears to be difficult in practice. Such models can only be used when the dimension of iq  is very small and with 

very large samples. 
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2.3. Likelihood functions and “statistical calibration” of individual 

parameters 

The probability density function of the dependent variable ic  conditional on its observed 

determinants 
iz  defines the likelihood function on which the ML estimation framework is based. 

For RP models, this probability density function is defined as the mean of ( | , ; )i i if c z q μ , the 

assumed “kernel” probability distribution function, over the distribution of the random parameter 

iq , the assumed “mixing” distribution: 

 ( | ; ) ( | , ; ) ( ; )i i i if f h d c z θ c z q μ q η q

 

(3) 

The term ( , )θ μ η  is the parameter vector of the considered parametric RP model. The 

probability density functions ( | , ; )i i if c z q μ  and ( ; )ih q η  are defined by the model and generally 

have simple analytical forms. But the integral in equation (3) can rarely be solved neither 

analytically nor numerically when ( ; )h q η  is continuous, as it is assumed here. Simulation 

methods need to be used for approximating the RP model individual likelihood 

functions ( | ; )i if c z θ  and this explains why the estimation of mixed model is often difficult.  

An estimated RP model can also be used for constructing simulation models defined as a sample 

of heterogeneous farm models, by using the response model (1) and by computing an estimate iq  

for each farm of the sample used for estimating the considered RP model. These estimates of the 

iq  terms can be based on simple “statistical calibration” procedures based on a well defined and 

coherent statistical background: the RP model of ic  and the statistical estimate of θ  obtained from 

this model and the data. Such procedures require either to generate random draws from the 

probability distribution of iq  conditional on ( , )i ic z  or to estimate its density function. 

The marginal probability distribution of iq , characterized by the density function ( ; )ih q η , is the 

ex ante or prior distribution of the random parameter. It describes the distribution of iq  in the 

considered farmer population. The probability distribution of iq  conditional on ( , )i ic z  is 

designated as an ex post or a posteriori density probability distribution. Its probability density 

function, denoted here as ( | , ; )i i ih q z c θ , sums up what is known about iq  for farmer i, according 

to a simple “Tell me what you do, I’ll know you who you are” logic. Variables ( , )i ic z  is the 

information directly brought by the data on farmer i and the functional form of ( | , ; )i i ih q z c θ  
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sums up the information brought by the considered RP model. To estimate ( | , ; )i i ih q z c θ  just 

requires to consistently estimate θ  and standard simulation methods. E.g., application of Bayes’ 

rule yields: 

 
( | , ; ) ( , , ; ) ( ; )i i i i i i ih hq z c θ c z q θ q η  where 

( | , ; )
( , , ; )

( | ; )

i i i
i i i

i i

f

f
 

c z q μ
c z q θ

c z θ
 

(4) 

As discussed above the term ( | ; )i if c z θ  can be estimated, with simulation methods if needed, 

when a consistent estimate of θ  is available. 

The term [ | , ]i i iE q c z  is the best predictor of iq  conditional on ( , )i ic z  according to the minimum 

squared prediction error criterion.
9
 Provided that 

 [ | , ] ( | , ; )i i i i iE h d q c z q q z c θ q  (5) 

[ | , ]i i iE q c z  can be estimated when a consistent estimate of θ  is available. E.g., draws from 

( | , ; )i i ih q z c θ  can be obtained from a Metropolis-Hastings simulator (see, e.g., Train, 2009). But 

this approach is time consuming in our case. Equation (5) suggests estimating [ | , ]i i iE q c z  by 

using an importance sampling approach with ( ; )ih q η  as the proposal density function. E.g., the 

integral in equation (5) and the terms ( , , ; )i i c z q θ  involved in equations (4) can be computed 

with simulation methods if needed. 

An estimate of [ | , ]i i iE q c z  provides a prediction of iq  with a consistent statistical background. 

One can thus build a simulation model with heterogeneous farms and farmers from the considered 

sample and the estimated model. It suffices to “statistically calibrate” iq  for each sampled farm as 

shown above.
10

  

 

3. Random parameter multi-crop model 

This section presents the model to be used in the empirical application. This model is a RP version 

of an econometric multi-crop model proposed by Carpentier and Letort (2014). It combines a 

                                                 
9
 The mode of ( | , ; )i i ih q z c θ  may also be used for estimating iq , according to the maximum likelihood criterion.  

10
 We keep on using the term “calibration” here because the considered estimate of iq  rely on a limited amount 

information specific to farm i, i.e. it only relies on ( , )i iz c  
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Nested MultiNomial Logit (MNL) acreage share model with a system of (dual) quadratic yield 

supply and input demand functions. It was chosen due to its parameter parsimony and to the easy 

interpretation of its parameters, as well as because its functional form is particularly smooth. 

Further details on this multi-crop model and on its theoretical background are provided in 

Appendix A. 

In this article, this model is mainly used as a simple statistical model structured by a few micro-

economic assumptions related to farmers’ production choices and outcomes. In this respect, we 

depart from its presentation in Carpentier and Letort (2014) which was focused on its structural 

interpretation and on its theoretical consistency. As will be discussed below, farmers’ acreage 

choices depend on many factors. These factors cannot be included in a single econometric model 

and, maybe more importantly, are likely to significantly depend on the farm and on the farmer 

itself. These observations, which we take for granted, deeply impact our modeling approach, in 

particular our interpretations of our acreage choice model and of the related estimation results.  

 

3.1. Yield supply and acreage choice models 

The considered model is defined according to the assumption that farmers maximize their 

expected profit in two steps. First they maximize the expected return to variable input uses for 

each crop under the assumption that this return doesn’t depend on the crop acreages. This step 

provides to the farmer an expected gross margin for each crop. It also provides systems of variable 

input demand and yield supply functions to the econometrician. Second, farmers allocate their 

cropland to the different crops according to their specific objectives and constraints. It is expected 

that farmers’ acreage of a crop increases in its own expected gross margin and that crop 

diversification motives generally prevent farmers to allocate their entire cropland to the most 

profitable crop. 

The following RP multi-crop model satisfies the aforementioned assumptions (provided that some 

parametric restrictions hold). It is composed of a sub-system of yield supply equations 

 2 2

, , , , ,1/ 2y y y

k it k i k it k k it k it k ity w p e      d δ  for kK  (6a) 
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and of a sub-system of acreage share models 
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
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  for 
gkK  and gG   

(6b) 

 

where 

 2 1

, , , , , ,1/ 2 ( )y s s

k it k it k i k it k it k i k itp w p e          for kK  (6c) 

Equation (6a) defines the yield of crop k, 
,k ity , as a function of the anticipated

11
 price of crop k, 

,k itp , of the price of an aggregate variable input, itw , and of an error term, ,

y

k ite . This yield supply 

function also depends on crop specific climatic effects through 
,k itd , a variable vector aggregating 

monthly climatic variables specific to crop k. Given that the fixed curvature parameter k  needs to 

be positive for the yield function to be well behaved, the farmer specific parameter 
,

y

k i  can be 

interpreted as the maximum expected yield of crop k on farm i. This random parameter depends on 

the natural endowment of the farm, on the production technology used by the farmer as well as on 

his technical skills. The error term ,

y

k ite  captures the effects of random events, e.g. sanitary 

conditions. It is assumed that farmer i considers the elements of ,( : )y y

it k ite k e K  and 

,( : )it k it k d d K  as centered random variables when he chooses his acreage.
12

 

The yield supply functions presented in equation (6a) are obtained as the solutions to the 

maximization of the expected gross margin of crop k under the assumptions, among others, that 

the yield function of crop k is quadratic in the aggregate variable input level. The congruent 

variable input demand functions are not considered in the estimated multi-crop model due to data 

constraints. The term 
,k it  given by equation (6c) is to be interpreted as a profitability measure of 

crop k defined at the land unit level. It includes the expected gross margin of crop k as it is defined 

by the maximization problem of the expected gross margin of crop k. The farmer specific 

parameter 
,

s

k i  is part of the production cost of crop k. It includes part of the expected costs of the 

                                                 
11

 Farmers’ price anticipations are assumed to be naïve in the empirical application. 

12
 The climatic variables ,k itd  are demeaned at the farm level 
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aggregate variable input as well as unobserved production costs. The error term ,

s

k ite  captures the 

effects of random (e.g. climatic and/or sanitary) events affecting the crop planting costs. 

The technical elements related to the definitions of the yield supply functions (6a) and of the 

expected crop margins (6c) are given in Appendix A.  

The acreage share model described in equation (6b) is a two-stage Nested MNL acreage share 

model. It relies on a partition of the crop set {1,..., }KK  into G mutually exclusive crop groups 

gK  for {1,..., }g G G . Defining the acreage share of group g as 
, ,

g
g it its s


 K

 and the 

acreage share of crop k within group g as 
, | , ,k it k g it g its s s  for 

gkK , it is easily seen that 

 
, ,

| ,

, ,

exp( )

exp( )
g

g i k it

k g it

g i it

s
 

 



 K

 
(7a) 

defines a model for the acreage share of crop k in nest g while 

  
 

1

, , ,

,
1

, , ,

exp ln exp( )

exp ln exp( )

g

h

i g i g i it

g it

i h i h i ith

s
   

   







 




 

K
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(7b) 

defines a model for the acreage share of nest g in total cropland. As will be discussed below, the 

definition of this partition may have different underpinnings. 

 

3.2. Unobserved heterogeneity in acreage choices 

The main feature of the acreage share model (6b) lies in the fact that it is a function of the crop 

expected gross margin vector ,( : )it k it k π K  parameterized by farmer specific parameters, i  

and ,( : )i g i g ρ G . According to equation (6c) the centered error term vector 

,( : )s s

it k ite k e K  and the farm specific parameter vector ,( : )s s

i k i k β K  basically play the 

roles of unobserved crop specific production costs in itπ . The random parameter s

iβ  plays in the 

Nested MNL acreage share model the role played by additively separable individual (random or 

fixed) effects in linear panel data models. As a result, it plays a crucial role for the prediction 

performances of the acreage share model (6b), just as the yield potential level vector 

,( : )y y

i k i k β K  terms play a crucial role for the prediction performances of the yield supply 

model (6a). Similarly, s

ite  basically is the error term vector of the acreage share model. Note also 
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that the elements of s

iβ  and of s

ite  are only defined up to an additive term. The terms ,

s

K i  and  ,

s

K ite  

are normalized at 0. 

Equations (6b) and (7) show that 
,g i  mainly governs the land allocation process within crop 

group g while the allocation process between crop groups is mainly governed by 
i . The marginal 

effect of the expected gross margin of crop hK , 
,it , on the (log of ) acreage share of crop 

gkK , 
,k its , i.e. 

 

,

, , | , ,

, , | , ,

,

( )    if  

ln       ( )    if   and 

                                    if  

it

g i g i i k g it i k it

k it g i i g it i it

i it

s s k

s s s h g k

s h g



   

  







    


     


 

 

(8) 

indicates that the responsiveness of the acreage choices to changes in the crop gross margins 

increases with the parameters i  and iρ  (as well as with the relevant crop acreage levels). These 

marginal effects also show that this acreage share model is well-behaved if , 0g i i    for 

gG , this condition ensuring that 
,

, 0
k i

k is





 .  

Finally, a result of Carpentier and Letort (2014) appears to be useful for presenting our 

interpretation of the RP Nested MNL acreage share model (6b). This result states that its  can be 

viewed as the solution in ( : )ks k s K  to the following maximization problem 

  max ( ,   s.t.   and 1; )c

it i itC   s s π s e s 0 s ι  (9a) 

where 

 
, ,

1 1 1

, ,

( , ( )

                                + (1 ) ln ln

; )
g

g

c c c

i it k k i k itg k

i i g i g g g i k kg g k

C s e

s s s s



   

 

  

  

 

 

 

  

s e
G K

G G K



 

(9b) 

The term ι  is a conformable unitary vector, the vector ( , , )c

i i i i ρ β  collects the elements of the 

farmer specific random parameters with ,( : )c c

i k i k β K , and ,( : )c c

it k ite k e K  collects the 

acreage share model error terms. The multi-crop model (6) imposes the normalization constraints 

c

i β 0  and c

it e 0  because these terms are included in the corresponding of the expected gross 

margin vector itπ , i.e. in s

iβ  and s

ite .  
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According to this result, the acreage share vector 
its  maximizes in s the expected gross revenue of 

the farm, it
s π , minus an entropic cost/penalty term ( ,; )c

i itC s e  under the total land use constraint, 

1 s ι . ( ,; )c

i itC s e  is strictly convex in s on its admissible set if 
, 0g i i    for gG . Under 

this condition ( ,; )c

i itC s e  can be interpreted as a function of the crop acreage s summing up the 

effects of the acreage diversification motives of farmer i. Carpentier and Letort (2014) interpret 

( ,; )c

i itC s e  as an implicit management cost function, and define it as the sum of the unobserved 

costs and the shadow costs related to binding constraints due to limiting quasi-fixed factor 

quantities or to bio-physical factors.
13

 Since these endowments are highly heterogeneous across 

farms, the empirical specification of this cost function needs to be farmer specific as much as 

possible, as it is the case here. All parameters of ( ,; )c

i itC s e  are assumed to be farmer specific. 

In empirical applications however, the parameter i  of the acreage share model may also capture 

the effects of other diversification motives of crop acreages. E.g., it may partly capture the effects 

of risk spreading motives (see, e.g., Chavas and Holt, 1990) in which case the term ( ,; )c

i itC s e  

includes elements of a profit risk premium. This provides further arguments for its specification 

based on farm specific parameters. Farmers may have heterogeneous attitudes toward risk, 

financial constraints or personal wealth levels. This also suggests that the empirical estimate of the 

acreage share model (6b) are to be interpreted as a reduced form model capturing various acreage 

diversification motives while accounting for the variability of the strength of these motives among 

the considered farmers’ population. 

Many multi-crop models proposed in the literature use more flexible functional forms than the one 

considered here (see, e.g., Chambers and Just, 1989; Oude Lansink and Peerlings, 1996; Moro and 

Skockai, 2013). As far as short run micro-economic choices are concerned, our viewpoint is that it 

may be more important to account for unobserved heterogeneity than to use a highly flexible 

functional form. Roughly speaking, if heterogeneity really matters it may be preferable to use a 

first order approximation for each sampled farm rather than to use a second order approximation 

for the whole sample. 

                                                 

13
 ( ,; )c

i itC s e  also admits a unique minimum in s (in its admissible set) and can also be interpreted as a penalty 

function for deviations from some benchmark/target acreage share vector. Carpentier and Letort (2014) interpret this 

“minimum cost” acreage share vector as the one that for which the quasi-fixed factor endowment of the farm is best 

suited. 
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Note finally that the above discussion suggests that the crop groups are to be defined so that the 

crops of a given group compete more in the land allocation process than they compete with crops 

of other groups, their contributions to the farm expected profit apart. Crops compete in the 

cropland allocation process when they are substitutes for specific purposes of interest to farmers or 

when they compete for the use of quasi-fixed inputs. E.g., crops may be grouped because they 

generate similar rotation effects, because they require similar previous crops, because they have 

highly correlated output prices or yields, or because they have similar cropping schedules. 

 

3.3. Distributional assumptions and likelihood functions 

System level notations are required to present the distributional assumptions defining the model 

considered in the empirical application, i.e. ( : )k k δ δ K ,  ( : )k k γ K  and 

,( : )it k itp k p K . In order to relate the estimated multi-crop model to the generic model 

considered in the preceding section, we also define the farmer production choice and outcome 

vector ( , )it it itc y s , the exogenous variable vector ( , , )it it it itwz p d  and the error term vector 

( , )y s

it it ite e e . The response function r considered in the preceding section is given by equations 

(6). It is parameterized by the random parameter vector (ln ,ln ,ln , )y s

i i i i iq β ρ β . The counterpart 

of r in the considered multi-crop model is also parameterized by the fixed parameter vector 

( , )λ γ δ . 

Following the arguments presented in the preceding section, the terms itz , ise  and iq  are assumed 

to be mutually independent, and ite  and ise  are assumed to be independent for t s .  Provided 

that the stochastic events affecting the crop production process are unknown at the time acreage 

choices are made, it can be assumed that the terms 
y

ite  and 
s

ite  are also independent. This implies 

that ( | , ; )it it if c z q μ  can be decomposed as: 

 ( | , ; ) ( | , ; , , ) ( | , ; , )y s

it it i it it i it it if f fc z q μ y z q γ δ Ψ s z q γ Ψ  (10) 

As is standard for error terms, 
y

ite  and 
s

ite  are assumed to be normal with ( , )y y

ite 0 ΨN  and 

( , )s s

ite 0 ΨN . The mixing distribution of the model is also assumed to be normal with 

( , )iq τ ΩN . Due to the log transformation of 
y

iβ , i  and iρ  in iq , these terms are indeed 

assumed to be jointly log-normal. This ensures their strict positivity. 
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Once again, in order to relate the multi-crop model considered here to the more general framework 

of the previous section, the fixed parameter vector λ  and the distinct elements of the covariance 

matrices y
Ψ  and s

Ψ , i.e. y
ψ  and s

ψ  with ( , )y sψ ψ ψ , are collected in μ . The distinct 

elements of τ  and Ω  are collected in η . Finally, ( , )θ μ η  defines the “full” parameter vector to 

be estimated. 

The mixing probability distribution density function, ( , )ih q η , is simply obtained by using the 

density of normal random vectors. The “kernel” likelihood function of observation ( , )i t  at θ , 

( | , , )it it if c z q μ , is then obtained by inverting the function r, by applying equation (2) and by 

using the probability density function of normal random vectors. Let ( ; ) u B  denote the 

probability density function of ( , )0 BN  at u. The density of ity  conditional on ( , )i iz q  is given 

by: 

  ( | , ; , , ) ( , ; , );y y y

it i i i it itf y z q γ δ Ψ e s z γ δ Ψ  (11a) 

and that of its  conditional on ( , )i iz q  is given by: 

     11 1

, ,( | , ; , ) ( , ; );gKs G s y

it i i i g i k it i it itg k
f s  

 

 
  s z q γ Ψ e s z γ Ψ

G K
 (11b) 

Finally, the random parameter vector density is given by: 

 ( ; ) ( ; )i ih  q η q τ Ω  (11c) 

The derivation of ( | , ; , )s

it i if s z q γ Ψ  is presented in Appendix B. It makes use of Berry’s (1994) 

device for inverting Nested Logit functions. It is finally assumed that the ( , )i ic z  variables are 

independent across farms in addition to be equi-distributed. 

 

4. Estimation issues 

From a theoretical viewpoint, the parameters of our fully parametric RP multi-crop model can be 

efficiently estimated according to the ML principle. But the ML estimator of θ  is practically 

“infeasible” for this model. The individual likelihood functions, i.e. the ( | ; )i if c z θ  terms given in 

equation (3), must be integrated with simulation methods, implying that the estimators of θ  must 

be simulated counterparts of the standard ML estimator. The ( | ; )i if c z θ  term can be estimated by 
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generating S independent (pseudo-)random draws from ( ; )h q η , the , ( )i sq η  terms for 1,...,s S . 

The empirical mean 
1

,1
( | , ( ); )

S

i i i ss
S f

 c z q η μ  is an unbiased simulator of ( | ; )i if c z θ . 

While econometricians usually employ Simulated ML (SML) estimators in this context, 

statisticians usually prefer to rely on Stochastic Expectation-Maximization (SEM) algorithms for 

computing asymptotically equivalent estimators (Jank and Booth, 2003). The asymptotic 

properties, as S and N grows to infinity with S rising faster than 
1/ 2N , of the SML and SEM 

estimators are those of the “infeasible” ML estimator of θ  (Jank and Booth, 2003). This section 

presents the main features of our estimation strategy and of its practical implementation.  

 

4.1. EM algorithms 

The EM algorithm is particularly well suited for computing ML estimators in cases where the 

model of interest involves hidden variables such as random parameters. It consists in iterating two 

steps, the Expectation step (E step) and the Maximization step (M step), until numerical 

convergence. It basically replaces a large ML problem by a sequence of simpler maximization 

problems. In our case the EM algorithm involves the probability density function of the 

“complete” dependent variable vector ( , )i ic q  conditional on the exogenous variable iz , 

( , | ; )i i i c q z θ . Application of Bayes’ law simply yields 

 ( , | ; ) ( | , ; ) ( ; )i i i i i i if h c q z θ c z q μ q η  (12) 

At iteration n, provided that 1nθ  is the value of θ  obtained at the end of iteration 1n , the EM 

algorithm iterates the following steps until numerical convergence: 

E step. Compute 

 
1 11

( | ) [ln ( , | ; ) | , ; ]
N

N n i i i i i ni
Q E  

θ θ c q z θ z c θ  (13a) 

 

where 

 
1 1[ln ( , | ; ) | , ; ] ln ( , | ; ) ( | , ; )i i i i i n i i i i nE h d   c q z θ z c θ c q z θ q z c θ q  for 1,...i N

  

(13b) 

 

M step. Update of the value of θ  by finding 
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nθ  such that 1 1 1( | ) ( | )N n n N n nQ Q  θ θ θ θ , if possible (14a) 

or by computing  

 
1argmax ( | )n N nQ  θθ θ θ  (14b) 

We ignore the integration problem involved in equation (13b) for the moment. The E step thus 

consists in integrating the “complete data” individual log-likelihood functions ln ( , | ; )i i i c q z θ  

over the ex post density function 1( | , ; )i i nh q z c θ  of the random parameters for obtaining 

1( | )N nQ θ θ . Equation (14b) defines a standard EM algorithm while condition (14a) defines a 

Generalized EM algorithm (Dempster et al., 1977). In some cases to define 
nθ  by condition (14a) 

is much less computationally demanding than to maximize 1( | )N nQ θ θ  in θ . 

EM algorithms allow taking advantage of the mixed structure of RP models. Equation (13) is 

specific to models involving hidden variables such as random parameters. In our case it is used to 

split the M step into two simpler problems, i.e. to find nμ  such that 

 
1 1 1( | ) ( | )c c

N n n N n nQ Q  μ θ μ θ  (15a) 

where 1 11
( | ) [ln ( | , ; ) | , ; ]

Nc

N n i i i i i ni
Q E f 

μ θ c z q μ z c θ  and to obtain 

 
1argmax ( | )q

n N nQ 
η

η η θ  (15b) 

where 1 11
( | ) [ln ( ; ) | , ; ]

Nq

N n i i i ni
Q E h 

η θ q η z c θ  and ( , )n n nθ μ η . The parameters of the 

“behavioral model” on the one hand, and those of the “mixing” probability distribution model on 

the other hand are separately updated in this M step. 

 

4.2. Stochastic EM algorithms 

The EM algorithm described above would lead to the ML estimator of θ . The SEM algorithms 

were proposed to extend the use of the EM algorithms in cases where the E step requires 

integration by simulation methods. In our application the expectations in equation (15) were 

integrated with an (self-normalized) Importance Sampling (IS) simulator employed in a similar 

context by Train (2008; 2009). This IS simulator uses 1( ; )nh q η  as the proposal density function 
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for estimating expectations of functions of 
iq  conditional on ( , )i iz c  parameterized by 

1nθ .
14,15

 It 

was used for approximating the expectations of the E step, i.e. 1( | )c

N nQ μ θ  was approximated by: 

  1

, 1 , 1 , 11 1 1
( | ) ( )ln | , ( );

n

n

N S Tc

N S n n i s n it it i s ni s t
Q S f

    
  μ θ θ c z q η μ  (16a) 

while 1( | )q

N nQ η θ  was approximated by: 

  1

, 1 , 1 , 11 1
( | ) ( )ln ( );

n

n

N Sq

N S n n i s n i s ni s
Q S h

   
 η θ θ q η η  (16b) 

Where 

  

 
,1

, 1

,1 1

| , ( );
( )

| , ( );
n

T

it it i st
i s TS

n it it i ss t

f

S f
 



 




 

c z q η μ
θ

c z q η μ
 

(16c) 

The objective function of problem (16a) takes advantage of the panel structure of the data. The 

objective functions , 1( | )
n

c

N S nQ μ θ  and , 1( | )
n

q

N S nQ η θ  can be interpreted as the log-likelihood 

functions of standard models. They are simply weighted by the , 1( )i s n θ  terms and involve 

simulated pseudo-observations, the , 1( , , ( ))i i i s nc z q η  vectors for 1,...,i N  and 1,..., ns S . To 

solve in η  and in μ  the simulated counterparts of problems (15) appeared to be much easier than 

to directly maximize in θ  the corresponding sample simulated log-likelihood function  

    1

, ,1 1 1
( ) ln | , ( );

TN S

N S it it i si s t
L S f

  
  θ c z q η μ  

(17) 

The dimension of θ  is quite large in our case and the functional form of 
, ( )N SL θ  makes it difficult 

to split its maximization problem into smaller optimization problems. The Newton-type 

algorithms usually employed for maximizing the simulated likelihood function in problem (17) 

                                                 
14

 It can be seen as a direct application of equation (4). It was used to estimate the conditional expectations in 

equations (14)–(15) as well as to calibrate the farmer’s specific parameters in our empirical application. 

15
 This proposal density is unlikely to be very efficient when the random parameters strongly impact the modeled 

choice and outcomes. Moreover the use of normal density functions as proposal density is usually unwarranted owing 

to their light tails. But this proposal density has two main advantages. First, its use is simple. Second, it allows 

interpreting the obtained estimator of θ  as a Method of Simulated Score estimator which is closely linked to the 

usual SML estimator (Train, 2008). Statisticians rarely refer to SML estimators. They often approximate the 

1[ln ( , | ; ) | , ; ]i i i i i nE  c q z θ z c θ  terms by directly drawing from the ex post density 1( | , ; )i i nh q z c θ , e.g. by 

using Metropolis-Hasting simulators.  
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only have local convergence properties. This makes the definition of “good” starting values a 

crucial and difficult issue. 

Deterministic EM algorithms increase the sample log-likelihood at each iteration, implying that 

they generally lead to a (local) maximum of the considered likelihood function. SEM algorithms 

do not necessarily monotonically increase the simulated sample log-likelihood due to the 

simulation noise, but they are expected to do so when S is “large enough”.
16

 

 

4.3. SAEM algorithms and ECM algorithms 

Numerous extensions of the basic EM algorithms initially proposed by Dempster, Laird and Rubin 

(1977) are now available in the computational statistics literature. This offers to applied 

statisticians/econometricians a rich toolbox for designing SEM algorithms specifically adapted to 

their empirical problems.
17

 The SEM algorithm we used for the empirical application was 

designed so as to simplify the M step as much as possible. 

This algorithm is a Stochastic Approximation EM (SAEM) algorithm, the SAEM algorithms 

consisting in a class of SEM algorithms proposed by Delyon et al. (1999) with two main 

advantages. First, SAEM algorithms are numerically stable despite their requiring integrations 

relying on simulation methods at each of their iterations. Second, they allow using simplified 

versions of the M step. In order to compute nμ  we combined simplifications of the M step 

proposed by Meng and Rubin (1993) on the one hand and and by Caffo et al. (2005) on the other 

hand. These allow taking advantage of the factorization given in equation (10).  

We finally end up with a SEM algorithm for which the elements of nη  are computed as weighted 

empirical means and covariances whereas the elements of nμ  are defined as weighted empirical 

covariances or as weighted Feasible Generalized Least Squares estimators. A detailed presentation 

of this algorithm is provided in Appendix C. The particular design of the SEM algorithm we use 

was mainly based on practical considerations. Other SEM algorithms may be more efficient from 

                                                 
16

 The main drawback of EM algorithms is their linear convergence rate. They are slower than Newton-type 

algorithms which enjoy a quadratic convergence rate. However, this comparison only holds locally, i.e. within a 

neighborhood of the likelihood function. Indeed, EM algorithms are known to quickly converge to a neighborhood of 

the likelihood function but to slowly converge within this neighborhood. This led Ruud (1991) to suggest designing 

hybrid algorithms with an EM algorithm starting the maximization process and a Newton-type algorithm terminating 

it. 

17
 As well as to their preferences. 
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a numerical viewpoint. But this algorithm is relatively easy to code, has good theoretical 

properties and seems to perform well in practice, at least as far as our limited experience proves 

this.  

 

4.4. Identification issues 

Both sub-systems could be estimated separately. The yield supply equation sub-system (6a) would 

identify the price parameter vector γ , the climatic effect vector δ  and the parameters of 

probability distribution of the yield potential levels 
y

iβ . The acreage share choices (6b)–(6c) would 

identify γ  and the parameters of probability distribution of 
iq . However, this identification would 

be empirically difficult as it would mainly rely on the exogenous variations of functions of the 

price variable vector ( , )it itwp , i.e. on the variations of the 
,k itp , 

,K itp , 
2 1

,it k itw p
 and 

2 1

,it K itw p
 terms, 

as well as on the parametric assumptions related to the “kernel” and “mixing” probability 

distributions of the considered model. 

When both sub-systems are considered simultaneously, the probability distribution of 
y

iβ  and the 

price parameter vector γ  is still mainly identified by the yield supply equation sub-system (6a), 

although the acreage share model (6b)–(6c) also contributes to this identification. The probability 

distribution of the farm specific parameters of the acreage management cost function ( , , )s

i i i ρ β  is 

mostly identified by the variations of 
2 2

, , ,( 1/ 2 )it i it itp w p       in the crop gross margins 

given in equation (6c), i.e. by the variations of the price variable vector ( , )it itwp  and by the 

implicit variations of 
y

iβ  as they are identified by the yield supply sub-system (7a). In this case, 

the model parameters identified by the yield supply sub-system are mostly “supplied” to the 

acreage share choice sub-system.  

Of course, whether both sub-systems are considered simultaneously or not, the choice of the 

parametric model of the “mixing” probability distribution, i.e. the choice of ( ; )ih q η , also 

contributes to identify the model parameters. This distributional assumption implicitly constrains 

the functional form of the correlation between the elements of iq . Note also that the crop gross 

margins itπ  are correlated with the random parameters ( , , )s

i i i ρ β  of the acreage share model, i.e. 

they are endogenous with respect to these random terms. The choice of ( ; )ih q η  implicitly 

imposes a functional form for this correlation and, as a result, allows controlling for this 

correlation.  
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5. Empirical application 

As an illustrative application of the approach proposed in this article to account for farm 

heterogeneity, we use a set of French data to estimate the multi-crop model presented in the 

second section. These estimation results allow an investigation of the distribution of the random 

parameters of the model, which comes to illustrate the importance of unobserved heterogeneity in 

farmers’ production choices. We also perform a “statistical calibration” of the model parameters 

for each sampled farmer in order (i) to evaluate the performances of the estimated model and (ii) 

to reveal some potential determinants of the heterogeneity in farmers’ behaviors. We then perform 

some simulations in order to study the impacts and potential implications of the modeling of 

heterogeneous behaviors on simulation results. 

 

5.1. Data 

Our main objective in this empirical application being to investigate the importance of unobserved 

heterogeneity effects, our data set has been selected so as to contain farms with relatively 

homogenous production choices. More precisely, we focus on farms highly specialized in grain 

production: the data set used to estimate our model is a panel data sample of 370 observations of 

French grain crop producers in the large (geological) Paris basin over the years 2004 to 2007, 

obtained from the Farm Accountancy Data Network (FADN). It provides detailed information on 

crop production for each farm: acreage, yield and price at the farm gate. The aggregated input 

price index is made available at the regional level by the French Department of Agriculture. The 

climatic variables are provided at the municipality level by Meteo France, the French national 

meteorological service. 

In our application, yield levels and acreage share choices are considered for three (aggregated) 

crops: soft wheat (crop 1), other cereals (mainly barley and corn, crop 2) and, oilseeds (mainly 

rapeseed) and protein crops (mainly peas) (crop 0). Crop aggregates are based on agronomic 

considerations. The basic rotation scheme of the French grain producers is a sequence with three 

crops as: rootcrops (e.g., potato or sugar beet) or protein crop or oilseed (e.g., rapeseed or 

sunflower) – winter wheat – secondary cereal (e.g., barley or wheat). Rootcrops require good 

quality soils which are found in the north of France. Sunflower is grown in the south of France 

while rapeseed, the other main oilseed crop is grown in the north half of France (our region of 

interest). Sugar beet and potato acreages were considered exogenous due to production quotas for 

sugar beet and production contracts for potatoes. 
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The considered sample only includes observations with strictly positive acreages. This selection 

rule doesn’t lead to significant attrition thanks to the crop aggregation procedure (less than 25% of 

the observations have been excluded from the sample).  Our sample covers the French regions 

specialized in grain production, with the notable exception of the south-west of France where corn 

monoculture is the dominant cropping system. The 105 farms of our sample are observed for 2 to 

4 years. We assume that farms’ attrition is exogenous because the French FADN is constructed as 

a rotating panel seeking to collect data for 4 years for each sampled farm. Such an exogenous 

attrition is easily accommodated in our modeling framework. Farms’ likelihood functions are 

computed according to the observed sequences. 

 

5.2. Estimation Results 

Our estimations were conducted by using the SAS® software (IML procedure). The recursive step 

of simulation of SAEM algorithm was implemented using 1000 draws. The algorithm converged 

without difficulties after 244 iterations. Results were not significantly affected by the use of 

alternative starting values or by the use of larger numbers of draws.   

The estimation results are reported in Table 1 and Table 2. Most parameters, especially the 

expectations and covariances of the random parameters, iq , and the variance matrices of the error 

terms, ite , appear to be precisely estimated. The fixed parameters representing the price effects, γ , 

also appear to be relatively precisely estimated. 

The probability distribution of the yield equations random parameters, 
y

iβ , which represent 

potential crop yields on each farm, is precisely estimated and the parameter estimates lie in 

reasonable ranges. This was expected since the yield equation system basically is a regression 

equation system with individual random terms (Biorn, 2004). The estimated variances and 

covariances of the 
y

iβ  parameters show that these parameters significantly vary across farms while 

being strongly positively correlated to each other. Yield potentials vary across regions and good 

growing conditions for a grain crop are also good for the others. The variance of the parameters 

representing potential yields ,

y

k i  is higher or close to that of error terms ,

y

k ite  for wheat and other 

cereals, but the variance of ,

y

k ite  is twice that of ,

y

k i  in the oilseeds case. This may reflect at least 

two points: first, a large part of the heterogeneity in cereals, and notably wheat, yields is due to 

differences in unobservable characteristics of each farm or farmer; second, given that rapeseed is 

by far the most important oilseed in northern France, these results may be due to the fact that the 
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rapeseed yield is more risky than the cereal yield, mostly due to its sensitivity to climatic 

conditions as well as to bugs and diseases.  

 

Table 1: Selected parameter estimates, yield supply equations 

 
k  

,[ ]y

k iE   , ,[ , ]y y

k i iCov    ,[ ]y

k itV e  

   Winter 

wheat 

Other 

cereals 
Oilseeds 

 

   ( 1 ) ( 2 ) ( 3 )  

Winter wheat 

( 1k  ) 

0.637 8.354 0.914 0.747 0.530 0.480 

(0.279) (0.230) (0.383) (0.325) (0.230) (0.072) 

Other cereals 

( 2k  ) 

0.808 8.363 0.747 1.010 0.493 0.988 

(0.292) (0.301) (0.325) (0.491) (0.205) (0.156) 

Oilseeds 

( 3k  ) 

0.994 6.255 0.530 0.493 0.420 0.714 

(0.291) (0.208) (0.230) (0.205) (0.236) (0.120) 

Note: standard errors are in parentheses 

 

Table 2: Selected parameter estimates, acreage share equations 

 Expectation  Covariances with 

  ln i  ln i  
 

1,ln y

i  2,ln y

i  3,ln y

i  

    

 Winter 

wheat 

Other 

cereals 
Oilseeds 

ln i  -2.434 0.177 0.139  0.005 0.011 0.007 

 (0.130) (0.070) (0.078)  (0.011) (0.014) (0.012) 

ln i  -2.179 0.139 0.301  -0.013 -0.002 -0.004 

 (0.165) (0.078) (0.117)  (0.016) (0.019) (0.018) 

Note: standard errors are in parentheses 

 

The acreage share equation parameter estimates representing the flexibility of acreage adjustment 

between cereals and oilseeds, i , and between wheat and other cereals, i , are reported in Table 2. 

These estimates also range in reasonable ranges. Importantly, the estimate of the mean of i  is 
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higher than that of 
i . 

i  being larger than 
i  is a sufficient condition for the entropic acreage 

management cost function, lying at the root of the Nested MNL acreage share function, to be 

convex. According to the estimates of their respective variances, the 
i  and 

i  parameters 

significantly vary across farms. This result is important for simulation studies because these 

parameters largely determine acreage price elasticities in MNL acreage share models. The higher 

are 
i  and 

i , the more acreages adjust in response to economic incentives.  

 

5.3. Statistical calibration of individual parameters 

As explained in the first section, the estimated parametric model allows a statistical calibration of 

the (random) parameters, iq , for each farm/farmer of the sample.  Once the ex ante distribution of 

iq
 
in the population has been estimated we “statistically calibrate” the specific parameters for 

each individual i  based on the ex post density of iq . The ex post and ex ante density of the 

random parameters 
y

iβ , i  and i  are represented on Figure 1. The two distributions are almost 

superimposed for all parameters, which reflects a good specification of our model. We can also 

notice that the distributions of the yield parameters, 
y

iβ , appear to be more spread for other cereals 

than for the two other crops, reflecting a higher heterogeneity of yields between farms for that 

crop. That might be due to the fact that “other cereals” is an aggregate of various crops (mainly 

corn and barley), whereas “wheat” is a single crop and “oilseeds” is essentially composed of 

rapeseed in our sample. The probability distributions of i  and i  reflects the fact that i  

parameters generally take lower values than i  parameters (this is actually the case for 76% of the 

farms/farmers, the remaining 24% individuals having i  values almost equal to i  values).
18

 

Figure 2 reports the calibrated values of the 
y

iβ , i  and i  parameters together with their 

confidence intervals for each farm/farmer of our sample. These graphs show that confidence 

intervals of parameters do not overlap for all individuals, demonstrating that these parameters do 

actually take different values from one individual to another. This comes to illustrate the 

heterogeneity, across farms, in potential yields and in the way farmers are able to adjust their 

acreages in response to economic incentives.  

                                                 
18

 Note that the inequality constraints i i   can be enforced for 1,...,i N  by a suitable parameterization of the 

acreage share model. 
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Figure 1: Ex post and ex ante probability distributions of the random parameters 
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Figure 2: Calibrated values and confidence intervals of individual parameters 

1,ln y
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Having calibrated individual parameters for each farm/farmer, i.e. having computed an estimate of 

[ | , ]i i iE q z s  for 1,...,i N , we are able to compute the individual yields and acreages predicted by 

the NMNL model. These predictions are then used to compute “pseudo 2R ” criteria corresponding 

to the share of the variance of interest variables predicted by the model, and to compare the 

observed values of these variables to their predicted values. The fitting criteria of the model are 

reported in Table 3. The model proves to fit well the data, especially for wheat and other cereals 

with “pseudo 2R ” close to 70%. 

 



Working Paper SMART – LERECO N°15-10 

32 

Table 3: Fitting Criteria of the Model: Pseudo R² 

 Pseudo R² 

 
Yields 

,k ity  

Acreage shares 

,k its  

Winter wheat ( 1k  ) .79 .79 

Other cereals ( 2k  ) .68 .77 

Oilseeds ( 3k  ) .61 .43 

 

Up to this point, our estimation results have shown that farmers’ behaviors do actually rely on 

heterogeneous factors. It thus seems crucial to account for heterogeneity in micro-econometric 

production choice models. If the sources of this heterogeneity were known to econometricians, 

they could be controlled for through, e.g. the use of control variables.
19

 However, if some of them 

are identifiable, heterogeneity sources are multiple and most of them can certainly not be reduced 

to farm/farmers’ observable characteristics. 

This point is illustrated on Figure 3 and Table 4. Maps reported on Figure 3 show the calibrated 

values of three parameters: ,

y

k i  for wheat, i  and i  for each farm of our sample. The top left 

map clearly shows that the distribution of potential wheat yields exhibits a spatial pattern, the 

highest yields being located in the North of France. This is in total accordance with what is known 

about the different agronomic potentials of French regions. Introducing spatial farm characteristics 

in the model could thus help accounting for some heterogeneity. Farms’ localization is however 

not the only source of heterogeneity in agricultural production choices. This is reflected by the two 

other maps on Figure 3: the distributions of the i  and i  parameters across space are different 

from that of the ,

y

k i  parameters. No specific spatial pattern seems to emerge from these maps.  

 

 

 

 

 

                                                 
19

 Of course the use of control variables is allowed in our modeling approach. But it is omitted for simplicity as well 

as for investigating the potential of random parameter models. 
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Figure 3: Distribution of selected random parameters across the population sample  
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In a further attempt to qualify the potential sources of farmers’ behavior heterogeneity, we 

computed the correlations between the individual parameters and some observable farms/farmers 

characteristics considered as exogenous in the model: the amount of farm capital, the root crops 

acreage and the age of farmer.
20

 These correlations are reported in Table 4.  

 

 

 

 

                                                 
20

 Other variables such as the number of labor hours or the total acreage of the farm have been tested but none of them 

were significantly correlated to any of the individual parameters. 
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Table 4: Correlations between random parameters and farmers’ characteristics 

 
1,

y

i  

Winter 

wheat 

2,

y

i  

 Other 

Cereals 

3,

y

i   

Oilseeds 

i  
i  

Farm capital 0.15 0.11 0.23 0.16 0.00 

 (0.12) (0.24)  (0.02) (0.10) (0.99) 

Root crop acreage 0.29 0.19 0.27 0.41 -0.02 

 (<0.01) (0.05) (<0.01) (<0.01) (0.83) 

Farmer’s age 0.28 0.17 0.24 0.17 -0.06 

 (<0.01) (0.09) (0.01) (0.07) (0.57) 

Note: Student’s Test p-values are in parentheses 

 

Farm capital is positively and significantly correlated with the ,

y

k i   parameter for oilseed, the i  

parameter, and to a lesser extent with the ,

y

k i  parameter for wheat and other cereals. This may 

reflect the fact that farms endowed with more capital are the more productive ones and also own 

enough machinery to easily adjust their acreages. Two alternative explanations can lie at the root 

of the positive and significant correlations between root crop acreage and the ,

y

k i  parameters. On 

the one hand, root crops are good preceding crops for wheat and other cereals, implying that root 

crop acreages may positively impact the cash grain yields through crop rotation effects. On the 

other hand root crops require high soil quality, implying that large root crop acreages may also 

indicate soil quality. Root crops can be used as an alternative to oilseeds as previous crops for 

wheat and other cereals and thus relax some constraints on acreage adjustments which translates 

into a positive correlation with the i  parameters. The positive and significant correlations 

between farmers’ age and potential yields might be due to the role played by experience in 

farmers’ skills and abilities, or by generational differences in the intensity of input, notably 

pesticides, use. All the aforementioned exogenous variables could thus help controlling for part of 

farm heterogeneity in our production choice model. However, none of the correlations presented 

in Table 4 is strong enough to conclude that using these control variables would be sufficient to 

capture all the sources of heterogeneity.   
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5.4. Simulation Results 

Our “statistically calibrated” model is now used to conduct some simulations aimed at illustrating 

the potential impacts that accounting for farm heterogeneity can have on such model outcomes. 

We simulate the impacts of changes in crop prices that roughly correspond to the changes that 

have been observed in France since 2007, namely a 20% increase in wheat and other cereal prices 

and a 50% increase in oilseeds prices.   

Table 5 reports the distribution characteristics of the elasticities of acreages to changes in crops 

prices in our sample. These elasticities are key parameters determining farmers’ responses to price 

shocks. The calibrated elasticities lie in a reasonable range and reflect the higher flexibility of 

acreage adjustments within the cereal nest: wheat (respectively other cereals) acreage responds 

more to a change in other cereals (respectively wheat) price than to a change in oilseed price. 

Furthermore, the reported quantile values reflect a significant dispersion of elasticities within our 

sample. One can thus expect each farmer to react differently to the price changes we simulate 

here, which is not surprising given the variances of the model random parameters.    

 

Table 5: Characteristics of the Distribution of the Acreage Shares Price Elasticities  

 Average Quantiles 

  Q5 Q25 Q50  Q75  Q95  

Wheat acreage       

Wheat price  0.42  0.24  0.31  0.39  0.49  0.73 

Other cereals price -0.25 -0.59 -0.31 -0.20 -0.15 -0.11 

Oilseeds price -0.13 -0.21 -0.15 -0.12 -0.10 -0.07 

Other cereals acreage       

Wheat price -0.49 -1.23 -0.67 -0.37 -0.23 -0.14 

Other cereals price  0.61  0.20  0.33  0.48  0.80  1.31 

Oilseeds price -0.13 -0.21 -0.15 -0.12 -0.10 -0.07 

Oilseeds acreage       

Wheat price -0.34 -0.79 -0.42 -0.28 -0.20 -0.12 

Other cereals price -0.21 -0.56 -0.26 -0.15 -0.09 -0.05 

Oilseeds price  0.46  0.16  0.29  0.40  0.58  0.87 

 

The first column of Table 6 reports the effects on acreages of the changes in crop prices simulated 

using our RP model. The relative increase in oilseeds price compared to wheat and other cereals 
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prices lead farmers to reallocate part of their land to this now more profitable crop: among the 

46,475 ha devoted to crops in our sample, 766 ha of wheat and 563 ha of other cereals acreages 

are reallocated to oilseeds which acreage thus increases by 1,330 ha. This represents average 

variations of 2.1 ha, 1.5 ha and 3.6 ha for respectively wheat, other cereals and oilseeds acreages. 

However, these variations significantly vary from one farm to another: the increases in oilseeds 

acreage notably vary between 0.5 ha and 14.5 ha in absolute term, and between 3.3% and 54.4%  

of initial oilseeds acreages, depending on the farm. These contrasting results come to illustrate the 

heterogeneity in farmers’ response to economic incentives.  

 

Table 6: Simulated Impacts on Acreages of the Price Shock  

 RP model Fixed 

parameter model 

Fixed/RP model 

Wheat Acreage    

Total change (ha) -766 (-3.7%) -299 (-1.4%) -821 (-4.0%) 

Average change (ha) -2.1 (-3.7%) -0.8 (-1.5%) -2.1 (-3.9%) 

Max change (ha) +1.9 (+1.9%) +0.6 (+1.0%) +1.6 (+2.6%) 

Min change (ha) -11.6 (-17.9%) -3.5 (-3.9%) -12.3 (-11.3%) 

Other cereals Acreage    

Total change (ha) -563 (-4.1%) -59 (-0.4%) -606 (-4.4%) 

Average change (ha) -1.5 (-4.4%) -0.2 (-0.4%) -1.6 (-4.6%) 

Max change (ha) +2.0 (+10.4%) +1.0 (+4.6%) +0.5 (+1.0%) 

Min change (ha) -8.4 (-18.8%) -2.5 (-3.9%) -7.8 (-12.6%) 

Oilseeds acreage    

Total change (ha) +1330 (+11.1%) +358 (+3.0%) +1427 (+11.9%) 

Average change (ha) +3.6 (+13.9%) +1.0 (+3.1%) +3.9 (+12.8%) 

Max change (ha) +14.5 (+54.4%) +3.3 (+6.1%) +14.4 (+28.3%) 

Min change (ha) +0.5 (+3.3%) <0.1 (+1.3%) +0.2 (+4.5%) 

Note: Numbers in parentheses correspond to percent changes compared to initial acreages 

 

In order to further assess the potential impacts of the approach proposed in this article to account 

for heterogeneity, two alternative versions of the Nested MNL model have been estimated and 

used to simulate the effects of the same price shock. In the first model, all parameters are 

considered as fixed. This model, which will subsequently be referred to as the fixed parameter 

(FP) model, is estimated using a standard ML approach. In the second model, individual effects 
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are introduced by considering the constant term of the yield and acreage equations, 
y

iβ  and 
s

iβ , as 

random, the   and   coefficients being fixed. This model, which will subsequently be referred to 

as “fixed/random parameter (F/RP) model”, is estimated using the SAEM algorithm. The 

estimation results of these two models are not presented here due to space limitation but are 

available upon request. Two main elements come out of these results. (i) In the F/RP model, the 

estimated values of   and  are respectively equal to 0.08 and 0.09 and are thus relatively close 

to their estimated means in the RP model. This is not the case with the FP model: the estimated 

value of  equals 0.02 and that of   equals 0.06. (ii) The log likelihoods of the F/RP and FP 

models respectively equal –953.1 and –855.9, compared to –723.4 for the RP model. The 

likelihood ratio test thus clearly indicates that the RP model significantly better fits the data than 

its constrained counterparts.    

The impacts of price changes on acreages simulated with these two models are reported in the 

second and third columns of Table 6. The overall impacts on acreages are clearly underestimated 

with the FP model: the changes in wheat, other cereals and oilseeds acreages are respectively 

equal to –299 ha, –59 ha and +358 ha, these effects are thus 60% to 90% lower than those 

simulated with the RP model. This can certainly essentially be attributed to the lower estimated 

values of   and  , which determine the magnitude of acreages responses to economic 

incentives. Differences are less obvious between the RP and the F/RP models. However, a closer 

look at the results shows that the impacts simulated with the two models differ significantly. This 

is illustrated on Figure 4 where we have reported the individual impacts on oilseeds acreage 

simulated with the F/RP model with respect to those simulated with the RP model. The simulated 

impacts are represented in absolute term (changes in ha) on the upper part graph and in relative 

term (percentage change compared to initial acreages) on the lower part graph. While the absolute 

changes in acreage simulated with the F/RP model appear to be relatively homogeneously spread 

around those simulated with the RP model, the picture is different when it comes to relative 

changes in acreage: the highest impacts on oilseeds acreages tend to be underestimated by the 

F/RP model and the smallest impacts tend to be overestimated. The reason is that, in absolute 

terms, the impacts on farms with relatively small initial oilseed acreage are higher when simulated 

with the RP model, which translates in higher percentage changes. On the contrary, the F/RP 

model tends to simulate larger impacts, in absolute term, for farms with higher initial oilseed 

acreages.  So, even if the impacts simulated with the two models are similar on average, their 

distribution across farms varies substantially. These results tend to show that partially or totally 
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ignoring unobserved heterogeneity of farms or/and of farmers in agricultural production choice 

model may induce misleading interpretations and/or policy recommendations.    

 

Figure 4: Simulated impacts of the price shock on oilseeds acreages, in %  
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6. Concluding remarks 

Taking for granted that many unobserved heterogeneous factors can impact farmers’ production 

decisions, the contribution of this article is threefold. 

First, we show that to consider RP versions of standard models of agricultural production choices 

model allows accounting for this unobserved heterogeneity in a fairly flexible way. 

Second, this article shows that estimators and optimization procedures found in the applied 

statistics and computational statistics literatures prove to be especially well suited for estimating 

RP models of agricultural production choices. In particular, estimators computed with suitably 

designed SEM algorithms appear to be interesting alternatives to the estimators derived from the 

SML framework. SEM algorithms are useful when estimating mixed models composed of sub-

models mostly connected because of their depending on random parameters. 

Third, our illustrative application tends to show that unobserved heterogeneity really matters in 

micro-econometric agricultural production models. Key parameters of the model exhibit 

significant variability across farmers. We also show how RP models can be used to “statistically 

calibrate” a simulation model based on a sample of heterogeneous farms and use this “calibrated” 

model to simulate the impact of crop price changes on acreages. This allows us to further illustrate 

the potential role of heterogeneity in micro econometric production choice models. In particular, 

our results show that ignoring the unobserved heterogeneity effects on farmers’ choices can lead to 

misleading simulation results and, as a result, to incorrect policy recommendations.   

Of course, our empirical framework has many limitations calling for improvement and further 

research.  

The limited size of the sample we consider is an issue. This sample was selected so as to only 

contain farms highly specialized in grain production, i.e. with homogeneous production choices, in 

order to investigate the importance of unobserved heterogeneity effects.  

To consider crop aggregates is not satisfactory, especially when specific features of the 

agricultural production technology, e.g., crop rotation effects, are to be considered. The use of 

disaggregated crop sets poses additional challenges. Even farms mostly specialized in cash grain 

crops have quite different crop sets. Specification and estimation of multi-crop models with corner 

solutions remain open research questions in the agricultural production economic literature. Our 

crop aggregates were mainly built to avoid the occurrence of null acreages. 

Our application only considers three crops or crop aggregates. In the RP multicrop model 

presented here the number of parameters to be estimated quadratically increases in the crop 
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number, due to covariances of the random parameters. This calls for an alternative approach to – 

or at least for an adaptation of – the “full RP” approach adopted here.  

Our considering a small time period and our focusing on short run choices lies at the root of our 

modeling the random parameter according to a unique, and stable across time, probability 

distribution. To consider longer time periods raises further issues. In particular, farmers’ 

technology choices and quasi-fixed factor endowments evolve over time, implying that the 

probability distribution of the random parameters cannot be assumed to be constant along the long 

time period in this case.  
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Technical Appendices 

 

Appendix A. Multicrop model details 

A.1. Yield supply and expected gross margin functions  

The yield supply function of crop k given in equation (6a) is obtained by maximizing in the 

aggregate variable input level, 
,k itx , the expected margin of crop k under the assumptions that the 

yield function is quadratic in the aggregate variable input level: 

 1 2

, , , , , , , ,1/ 2 ( )y y y x x x

k it k i k it k k it k k i k it k k it k ity e e x          d δ d δ  (A.1) 

and that the random terms 
,

x

k ite  and the climatic events 
,k itd   are observed when the input level is 

decided.
21

 This yield function is parameterized by fixed parameters, the curvature parameter k  

and the climatic event coefficients ( , )y x

k k kδ δ δ , and a random parameter
,

y

k i . It depends on the 

effects of random events represented by the centered error terms 
, , ,( , )y x

k it k it k ite ee . The term 

, , ,

y y y

k i k it k k ite  d δ  can be interpreted as the maximum yield level achievable by farmer i in year t 

while the term 
, , ,

x x x

k i k it k k ite  d δ  can be interpreted as the input use level required to achieve this 

maximum yield level. 

Assuming that the aggregated variable input price itw  is known at the beginning of the production 

process and that the price expectation for the output of crop k of farmer i in year t is given by ,k itp , 

the optimal input level of farmer i in t on crop k is obtained as:   

 1

, , , , ,

x x x

k it k i k it k k it k it k itx w p e     d δ  for kK  (A.2) 

the corresponding yield supply function as: 

 1 2

, , , , ,1/ 2 ( )y y y

k it k i k it k k it k it k ity w p e      d δ   for kK  (A.3) 

and the corresponding gross margin as: 

 2 1

, , , , , ,0 , , , ,( ) 1/ 2 ( )y y y x x x

k it k it k i k it k k it k it k it it k i k it k k itp e w p w e          d δ d δ  for 

kK  

(A.4) 

                                                 
21

 Whether the random event effects 
,

y

k ite  are observed or not doesn’t matter. These effects are forgone by the 

considered (risk neutral) farmer. 
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It is assumed that the crop gross margin levels considered by farmer i when choosing his acreages 

are the expectations of those given in equation (A.4) conditionally on the information set available 

at this time. Assuming that farmer i knows the parameters of his crop k production technologies 

, , ,( , )y x

k i k i k i β , ( , )y x

k k kδ δ δ  and k , and given his price expectations in year t, his expectation 

of  ,k it  depends on his expectations of the random terms 
,k ite  and 

,k itd  affecting crop k 

production process.  It is assumed that the terms 
,k ite  and 

,k itd  are centered from the viewpoint of 

farmer i when he chooses his acreage. This assumption yields the following expected crop k gross 

margin for farmer i in year t: 

 2 1

, , , , ,0 ,1/ 2y x

k it k it k i it k i k it k itp w w p        for kK  (A.5) 

It also implies that the random parameters ,k iβ  capture the effects of farm/farmer specific 

production conditions and/or technologies and requires the climatic variables to be centered for 

each farm (this is achieved in our case at the municipality level). According to this assumption, 

,

y

k i  is farmer i expectation of the maximum achievable yield of crop k and farmer i, and the term 

, ,

y y

k it k k ite d δ  captures the effects of random events on this maximum achievable yield. The terms 

,

x

k i  and 
, ,

x x

k it k k ite d δ  can be interpreted accordingly on “the input side”.   

 

A.2. Two-levels Nested MNL acreage share model 

The crop acreage share model given in equations (6b)–(6c) is derived from the following two-

levels Nested MNL acreage share choice model: 

  
 
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(A.6) 

for 
gkK  and gG . This model can be used to define crop group acreage share models and 

crop acreage share models within a given crop group, i.e. 

 
, | , ,k it k g it g its s s  for 

gkK  and 1,...,g G  (A.7) 

Where 
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, ,

g
g it its s


 K

 (A.8) 

and 

 1

| , , ,( )k g it k it g its s s   if  
gkK  (A.9) 

Using equation (A.7) it is easily seen that 

  
 
, , , ,

| ,

, , , ,

exp ( )

exp ( )
g

c c

g i k it k i k it

k g it c c

g i it i it

e
s

e

  

  


 


  K

 
(A.10) 

defines the optimal acreage share of crop k in nest g while 
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(A.11) 

defines the optimal acreage share of nest g in total cropland. 

Carpentier and Letort (2014) show that 
,( : )it k its k s K  can be defined as the solution in 

( : )ks k s K  to the following maximization problem 

  max ( ,   s.t.   and 1; )c

it i itC   s s π s e s 0 s ι  (A.12) 

where 

 
, ,

1 1 1

, ,

( , ( )
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(A.13) 

The term ι  is a conformable unitary vector, the vector ( , , )c

i i i i ρ β  collects the elements  

of the farmer specific random parameters with 
,( : )c c

i k i k β K , and 
,( : )c c

it k ite k e K  collects 

the acreage share model error terms. The term ( ,; )c

i itC s e  is strictly convex in s if and only if 

, 0g i i    for gG , in which case it can be interpreted as a diversification motive from the 

optimal crop acreage. 

It is then easy to derive the effects of a change in the expected gross margin of crop  on the 

acreage share of crop k. Provided that gkK  and hK , we simply have: 
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(A.14) 

with: 
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and: 
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(A.16) 

Equations (A.14)–(A.16) illustrate the crucial role of the curvature parameters, i  and 
,g i  for 

gG  of the implicit management cost function in the extent to which optimal acreage choices 

respond to changes in economic incentives. It is also easily checked that 
,

,ln 0
k i

k is





  while 

,
,ln 0

i
k is






  if k  when 

, 0g i i    for gG . 

 

A.3. Estimated multi-crop model 

Input demand equation (A.2) is not included in the estimated multi-crop models and the expected 

gross margin used in the acreage share model (6b) is not that given by equation (A.5), for two 

reasons. Input use levels are not observed at the crop level in our data set. They are only recorded 

at the farm level, unfortunately. This aggregation problem can be overcome by defining an input 

use allocation equation as in Carpentier and Letort (2012). However, this option would have 

increased significantly the complexity of the considered multi-crop model and of its estimation. 

Second, due to insufficient variation of the aggregate input prices in our data set as well as due to 

our not modeling input demands, it is difficult to separately identify the probability distributions 

of the parameters ,

x

k i  and ,

c

k i empirically. 

This explains why the expected gross margin used in the acreage share model (6b) is not that 

given by equation (A.5). The term ,

s

k i  in equation (6c) is given by: 



Working Paper SMART – LERECO N°15-10 

48 

 
, , ,

s c x

k i k i it k iw    (A.17) 

 

 

while 

 
, ,

s c

k it k ite e  (A.18) 

for kK . This implies that the crop profitability measures provided in equation (6c) are obtained 

as 
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(A.19) 
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Appendix B. Likelihood function 

The inverse function of r is required to determine the likelihood function of the considered model. 

The elements of 
y

ite  can easily be recovered from equation (6a) while the elements of 
s

ite  can be 

obtained by application of Berry’s (1994) device from equation (6b). With 
gkK  we have: 
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1 1
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(B.1) 

with , 0s

K ite  . It is assumed here that group G contains a single crop, crop K. This simplifies 

equation (B.1) but this is not necessary for inverting in 
s

ite  the part of the  response function r 

related to its , i.e. for obtaining the function ( , ; , )s

i it ite s z γ δ  satisfying ( , ; , )s s

i it it ite s z γ δ e . 

The density of ic  conditional on ( , )i iz q  can then be obtained by applying equations (2) and (10) 

and by using the density of normal random vectors. Let ( ; ) u B  denote the probability density 

function of ( , )0 BN  at u. The density of ity  conditional on ( , )i iz q  is given by: 

  ( | , ; , , ) ( , ; , );y y y

it i i i it itf y z q γ δ Ψ e s z γ δ Ψ  (B.2) 

and that of its  conditional on ( , )i iz q  is given by: 

     11 1

, ,( | , ; , ) ( , ; );gKs G s y

it i i i g i k it i it itg k
f s  

 

 
  s z q γ Ψ e s z γ Ψ

G K
 (B.3) 

The derivation of ( | , ; , )s

it i if s z q γ Ψ  relies on the usual transformation formula of the probability 

density function: 

  ( | , ; , ) det ( , ; ) ( , ; );
it

s s s y

it i i i it it i it itf 


 

s
s z q γ Ψ e s z γ e s z γ Ψ  (B.4) 

 

provided that , ,1
1

K

K it k itk
s s


   (and 

, 0s

K ite  ). The proof of  

   11 1

, ,det ( , ; ) g

it

Ks G

i it it i g i k itg k
s 

  

  
  s

e s z γ
G K

 (B.5) 

makes use of the identities 

 1det( ) (1 ) det        A ιι ι A ι A  (B.6) 

and 
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 1 1 1 1 1 1( ) (1 )                A ιι A A ιι A ι A ι  (B.7) 

where A is a non-singular symmetric matrix and ι  is conformable unitary vector.  

Finally, the random parameter vector density is simply given by: 

 ( ; ) ( ; )i ih  q η q τ Ω  (B.8) 
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Appendix C. Algorithms 

This appendix presents the algorithm we used in three steps, after a brief presentation of the self-

normalized IS simulator used here, as well as of its interests and limits. First, we restate the basic 

SEM algorithm using the IS simulator. Second, we show how the ideas underlying the ECM 

algorithms proposed by Meng and Rubin (1993) on the one hand and the Ascent-based Monte 

Carlo EM algorithms proposed by Caffo et al. (2005) can be used for designing an “Ascent-based 

SECM” algorithm simplifying the computations involved in the SEM algorithm. Finally we 

present the SAEM and its interests and show how the “Ascent-based SECM” algorithm can easily 

be adapted into an “Ascent-based SAECM” algorithm. 

 

C.1. IS simulator 

The IS simulator used here was employed by, e.g. Train (2008; 2009), for implementing SEM 

algorithms. It allows integrating by simulation method an expectation over the probability 

distribution of iq  conditional on ( , )i ic z  by using draws for the marginal probability distribution 

of iq . It allows approximating 

 
1 1[ln ( , | ; ) | , ; ] ln ( , | ; ) ( | , ; )i i i i i n i i i i nE h d   c q z θ z c θ c q z θ q z c θ q  (C.1) 

by 

 1

, , 1 , , 11 1
ln ( , | ; )

nS T

n i s n it i s n its t
S  

    c q z θ  (C.2) 

where the 

 
, , 1 , 1( )i s n i s n q q η  (C.3) 

terms are independent random draws from 1( ; )nh q η  for 1,..., ns S  and 1,...,i N , and 

 (C.4) 

 
, , 1 1

, , 1 , 1 1

, , 1 11

( | , ; )
( )

( | , ; )
n

i i i s n n

i s n i s n S

n i i i s n ns

f

S f
   

  

 

 



c z q μ
θ

c z q μ
 

(C.4) 

for 1,..., ns S  and 1,...,i N . 

This (self-normalized) IS simulator is an importance sampling simulator with ( ; )ih q η  as the 

proposal probability density function. This proposal probability density function is inefficient but 
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this simulator is fairly easy to code – (quasi-)random draws from ( ; )ih q η  are easily obtained and 

the 
, , 1 1( | , ; )i i i s n nf  c z q μ  terms need to be evaluated for computing the approximated objective 

function – and allows, to some extent, using large random draw numbers. Expectations such as 

1[ln ( , | ; ) | , ; ]i i i i i nE  c q z θ z c θ  can be integrated by using draws from ( | , ; )i i ih q z c θ . But such 

draws are more difficult to obtain. E.g., it is always possible to obtain Metropolis-Hastings (quasi-

)random draws from ( | , ; )i i ih q z c θ . This simulation technique consists in a rather long process to 

be repeated at each iteration of the SEM algorithm. It can be time consuming (Levine and Casella, 

2001). 

The use of normal density functions as proposal density is usually unwarranted due to their light 

tails. But this proposal density has two main advantages. First, its use is simple. Second, it allows 

interpreting the obtained estimator of θ  as a Method of Simulated Score estimator which is 

closely linked to the usual SML estimator (Train, 2008; 2009).  

The algorithms to be defined rely on the simulated versions of the conditional expectation of the 

sample log-likelihood function 
1

11
[ln ( , | ; ) | , ; ]

N

i i i i i ni
N E 

 c q z θ z c θ  of the complete data 

vector: 

 1 1

, 1 , , 1 , , 11 1 1
( | ) ln ( , | ; )

n

n

N S T

N S n n i s n it i s n iti s t
Q N S   

    
   θ θ c q z θ  (C.5) 

and, using ln ( , | ; ) ln ( | , ; ) ln ( ; )it it it itf h  c q z θ c z q μ q η , its decomposition given by 

 
, 1 , 1 , 1( | ) ( | ) ( | )N n n N n n N n nQ Q Q   c q
θ θ μ θ η θ  (C.6) 

with 

 1 1

, 1 , , 1 , , 11 1 1
( | ) ln ( | , ; )

n

n

N S Tc

N S n n i s n it it i s ni s t
Q N S f 

    
   μ θ c z q μ  (C.7) 

and: 

 1 1

, 1 , , 1 , , 11 1
( | ) ln ( ; )

n

n

N Ss

N S n n i s n i s ni s
Q N S h 

   
  η θ q η  (C.8) 

 

C.2. SEM algorithm 

The APIS Simulator allows designing a simple SEM algorithm. The “recursive estimator” 

proposed by Train (2008; 2009), as well as its extensions, are computed by using such SEM 

algorithms. The SEM algorithm iterates a sequence composed of a SE step and of a M step. 
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SE step. Integration of the conditional expectations 

Obtain independent (pseudo-)random draws , , 1i s nq  from 1( ; )nh q η  and compute the weight terms 

, , 1i s n 
 for 1,..., ns S  and 1,...,i N . 

M step. Update of the value of ( , )θ μ η  

Compute: 

 
, 1argmax ( | )n N n nQ  θθ θ θ  (C.9) 

or, equivalently: 

 
, 1argmax ( | )

n

c

n N S nQ  μμ μ θ  (C.10a) 

 

and 

 
, 1argmax ( | )

n

c

n N S nQ  ηη η θ  (C.10b) 

The decomposition of the maximization problem of , 1( | )
nN S nQ θ θ  in θ  into the maximization 

problems of , 1( | )
n

s

N S nQ μ θ  in μ  and of , 1( | )
n

q

N S nQ η θ  in η  illustrates the main interest in using 

EM algorithms for estimating random parameter models. This decomposition is specific to models 

involving latent/hidden variables such as random parameter models. 

 

C.3. “Ascent-based SCME” algorithm 

With ln ( ; ) ln ( ; , )h hq η q τ Ω  we observe that , 1 , 1( | ) ( , | )
n n

q q

N S n N S nQ Q η θ τ Ω θ  is easily 

maximized in ( , )τ Ω . It is the weighted log-likelihood function of a multivariate normal variable. 

Further decomposing ln ( | , ; )it itf c z q μ , and thus , 1( | )
n

c

N S nQ μ θ , suggests further simplification 

for the M step. With 

 ln ( | , ; ) ln ( | , ; , , ) ln ( | , ; , )y s

it it it it it itf f f c z q μ y z q γ δ Ψ s z q γ Ψ  (C.11) 

the terms 

 1 1

, 1 , , 1 , , 11 1 1
( , , | ) ln ( | , ; , , )

n

n

N S Ty y y

N S n n i s n it it i s ni s t
Q N S f 

    
   γ δ Ψ θ y z q γ δ Ψ  (C.12) 
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corresponding to the yield supply function sub-system, and 

 1 1

, 1 , , 1 , , 11 1 1
( , | ) ln ( | , ; , )

n

n

N S Ts s s

N S n n i s n it it i s ni s t
Q N S f 

    
   γ Ψ θ s z q γ Ψ  (C.13) 

corresponding to the acreage choice sub-system, are weighted log-likelihood function of 

multivariate Gaussian linear (in δ  and γ ) regression models. Since these terms both depend on 

γ , the maximization of 

 
, 1 , 1 , 1( | ) ( , , | ) ( , | )

n n n

c y y s s

N S n N S n N S nQ Q Q   μ θ δ γ Ψ θ γ Ψ θ  (C.14) 

in ( , , , )y sμ δ γ Ψ Ψ  cannot be split into two simpler maximization problems corresponding to the 

yield supply function and acreage choices sub-system. Even though, to maximize 

, 1( , , | )
n

y y

N S nQ δ γ Ψ θ  in ( , , )yδ γ Ψ  or to maximize , 1( , | )
n

s s

N S nQ γ Ψ θ  in ( , )sγ Ψ  requires the use of 

nonlinear optimization algorithms. Of course a simple Gauss-Seidel algorithm, the so-called 

Iterative Feasible Generalized Least Squares, can be used here. 

The ECM algorithms proposed by Meng and Rubin (1993) allow simplifying M steps. It is 

possible to replace a M step, e.g. the direct maximization , 1( | )
n

c

N S nQ μ θ  in μ , by a sequence of 

simpler maximization problems, i.e. a sequence of  Conditional M(CM) steps. This sequence of 

CM steps sequentially updates the value of μ  according to a predetermined partition of this 

parameter vector. The objective of these CM steps is to update the value of μ , not by maximizing 

, 1( | )
n

c

N S nQ μ θ  in μ , but by simply computing a value of μ  such that 

, 1 , 1 1( | ) ( | )
n n

c c

N S n N S n nQ Q  μ θ μ θ , if possible.
22

 We used the following SECM algorithm because it 

only involves very simple CM steps: 

 

SE step. Integration of the conditional expectations 

Obtain independent random draws , , 1i s nq  from 1( ; )nh q η  and compute the weight terms , , 1i s n   

for 1,..., ns S  and 1,...,i N . 

 

CM step. Conditional update of the value of ( , )θ μ η  

                                                 
22

 In their seminal article, Dempster, Laird and Rubin (1997) also considered this extension of the standard M step to 

define an extension of the standard EM algorithm which they designated as the Generalized EM (GEM) algorithm. 
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Compute: 

 
, 1 1argmax ( , | )

n

q

n N S n nQ   ττ τ Ω θ  (C.15a) 

 
, 1argmax ( , | )

n

q

n N S n nQ  ΩΩ τ Ω θ  (C.15b) 

 
, 1 1

, 1 1 1 1

argmax ( , | )

        argmax ( , , , | )

s
n

s
n

s s s

n N S n n

c y s

N S n n n n

Q

Q

 

   





Ψ

Ψ

Ψ γ Ψ θ

γ δ Ψ Ψ θ
 

(C.15c) 

 
, 1 1 1

, 1 1 1 1

argmax ( , , | )

        argmax ( , ,, , | )

y
n

y
n

y y y

n N S n n n

c y s

N S n n n n

Q

Q

  

   





Ψ

Ψ

Ψ γ δ Ψ θ

γ δ Ψ Ψ θ
 

(C.15d) 

and: 

 
* * , * * 1 , 1 1 1

1 1

( , ) if ( , , , | ) ( , , , | )
( , )

( , ) otherwise

n n

c y s c y s

N S n n n N S n n n n n

n n

n n

Q Q   

 

 
 


γ δ γ δ Ψ Ψ θ γ δ Ψ Ψ θ
γ δ

γ δ
 

(C.15e) 

where: 

 
* * ( , ) , 1( , ) argmax ( , , | )

n

y y

N S n nQ  γ δγ δ γ δ Ψ θ .
23

 (C.15f) 

The idea underlying the definition of ( , )n nγ δ  in equation (C.15e) is that of the Ascent-based 

Monte Carlo EM algorithms of Caffo et al. (2005). This simplified version of the “ascent-based” 

device of Caffo, Jank and Jones ensures that , 1 , 1 1( | ) ( | )
n n

c c

N S n n N S n nQ Q  μ θ μ θ . 

  In our case, the terms nτ  , nΩ , 
y

nΨ , 
s

nΨ  and ( , )n nγ δ  have analytical closed form solutions: 

 1 1

, , 1 , , 11 1

nN S

n n i s n i s ni s
N S  

  
  τ q  (C.16a) 

 1 1

, , 1 , , 1 , , 11 1

nN S

n n i s n i s n i s n n ni s
N S  

   
   Ω q q τ τ  (C.16b) 

 1 1

, , 1 , , 1 , , 11 1 1
( )

nN S Ts s s

n n i s n it s n it s ni s t
N S  

    
   Ψ e e  (C.16c) 

                                                 
23

 The update of ( , )γ δ  given in equations (CB.15e) and (C15f) is used to overcome the maximization of 

, 1( , , , | )N n n n nQ 

c
γ δ Λ Ψ θ  in ( , )γ δ . The solution in ( , )γ δ  to this maximization problem has an analytical closed form 

solution in the case considered here, i.e. for the “random parameter” model. But the counterparts of the function 

, 1( , | )N n nQ 

s
γ Ψ θ  for the “fixed parameters” and the “fixed/random parameters” models need to be numerically 

maximized in their fixed parameters. 
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 1 1

, , 1 , , 1 , , 11 1 1
( )

nN S Ty y y

n n i s n it s n it s ni s t
N S  

    
   Ψ e e  (C.16d) 

and: 

 
 

1
1 1 1

* * , , 1 , , 11 1 1 1 1
( , ) ( )

nN T N S T

it n it n i s n it n it i s ni t i s t
S 


  

     
     γ δ Z Λ Z Z Λ y β  

(C.16e) 

with obvious notations. 

 

C.4. “Ascent-based SACME” algorithm 

When new random terms , , 1i s nq  are drawn at each iteration, the numerical convergence of SECM 

algorithm may be difficult due to the simulation noise. Delyon et al. (1999) proposed the SAEM 

algorithms in order to attenuate this problem. In the SAEM algorithms the M step (or the sequence 

of CM steps) is modified in order to “smooth” out the objective functions considered along the 

SE(C)M iteration process. E.g., the objective function of the M step of the SEM algorithm given 

above, i.e. , 1( | )
nN S nQ θ θ , is replaced by: 

 
1, 1 , 2 , 1( | ) (1 ) ( | ) ( | )

n n nN S n n N S n n N S nP P Q 
      θ θ θ θ θ θ  (C.17a) 

or, equivalently, by 

  1

, 1 , 1 , 11 1
( | ) (1 ) ( | ) ( | )

n j n

nn

N S n m j N S j n N S nj m j
P Q Q  



    
      θ θ θ θ θ θ  (C.17b) 

where n  is a decreasing sequence of positive step size such that: 

 
1 1  , 

1 nn





   and 

2

1
( )nn





     (C.18) 

The “SACME” algorithm we used for computing the estimators of our random parameter 

multicrop model is defined by: 

 

SE step. Integration of the conditional expectations 

Obtain independent random draws , , 1i s nq  from 1( ; )nh q η  and compute the weight terms , , 1i s n   

for 1,..., ns S  and 1,...,i N . 

 

CM step. Conditional update of the value of ( , )θ μ η  
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Compute: 

 
1

1 1

, , 1 , , 11 1

(1 )

         
n

n n n

N S

n n i s n i s ni s
N S



 



 

  

  

   

τ τ

q
 

(C.19a) 

 
1

1 1

, , 1 , , 1 , , 11 1

(1 ) ( )

          
n

n n n n n

N S

n n i s n i s n i s n n ni s
N S



 



 

   

   

    

Ω Ω τ τ

q q τ τ
 

(C.19b) 

 1 1

1 , , 1 , , 1 , , 11 1 1
(1 ) ( )

nN S Ts s s s

n n n n n i s n it s n it s ni s t
N S   

     
       Ψ Ψ e e  (C.19c) 

 1 1

1 , , 1 , , 1 , , 11 1 1
(1 ) ( )

nN S Ty y y y

n n n n n i s n it s n it s ni s t
N S   

     
       Ψ Ψ e e  (C.19d) 

and: 

  
1

1

* * 1 1

1 1

, , , 1 , , 11 1 1 1

( , )

                  ( )
j

N T

it n iti t

n N S T

j n j i s j it n it i s jj i s t
S 




 

 

    



 

 

   

γ δ Z Λ Z

Z Λ y β

   

(C.19e) 

where 

  , 1
(1 )

n

j n m jm j
  

 
    for 1,..., 1j n   and 

,n n n  .  (C.20) 

 

C.5. Monitoring and stopping rule of the algorithm 

The calibration of the sequence steps n  and a suitable stopping rule for the “SACME” algorithm 

are essential criteria for its convergence. SAEM algorithms are shown to theoretically converge if 

n  is a positive sequence steps satisfying conditions (C.18). We used a standard decreasing 

sequence of positive step sizes (see, e.g., Jank, 2006 ; Polyak and Juditski, 1992) :  

 
1 1  , 

n n    with  (1/ 2,1]    (C.21) 

 

We retained 0.7   after several trials. 

We also used a standard stopping rule (Booth and Hobert, 1999; Booth et al., 2001) based on the 

relative changes in the values of the estimated parameters from an iteration to the next one. The 

algorithm stops when the following condition: 
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, , 1

2

, 1

max
j n j n

j

j n

 


 


 
  
 
   

(C.22) 

holds for three consecutive iterations for chosen positive values of the convergence parameters 1  

and 2 . Several iterations need to be considered due to the simulation noise generated by the 

random draws of the 
i
q  terms at each iteration (see, e.g., Booth and Hobert, 1999). We set up 

1 .01 and 2 .001 . Because condition (C.22) may hold for 2nθ , 1nθ  and nθ  even if these 

parameter values do not (approximately) achieve the maximum of the considered likelihood 

function, we checked that the scores were null and that the Hessian matrix was negative definite at 

the estimated value of θ  (Gu and Zhu, 2001). 
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