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Movers and stayers in the farming sector: accounting for unobserved heterogeneity in 

structural change 

 

Abstract 

This article compares the respective performance of the mover-stayer model (MSM) and the 

Markov chain model (MCM) to investigate whether accounting for unobserved heterogeneity in 

the rate of movements of farms across size categories improves the representation of the transition 

process. The MCM has become a popular tool in agricultural economics research to describe how 

farms experience structural change and to study the impact of the various drivers of this process, 

including public support. Even though some studies have accounted for heterogeneity across 

farms by letting transition probabilities depend on covariates depicting characteristics of farms 

and/or farmers, only observed heterogeneity has been considered so far. Assuming that structural 

change may also relate to unobserved characteristics of farms and/or farmers, we present an 

implementation of the MSM which considers a mixture of two types of farms: the `stayers' who 

always remain in their initial size category and the `movers' who follow a first-order Markovian 

process. This modeling framework relaxes the assumption of homogeneity in the transition 

process which the basis of the usual MCM. Then, we explain how to estimate the model using 

likelihood maximization and the expectation-maximization (EM) algorithm. An empirical 

application to a panel of French farms over 2000-2013 shows that the MSM outperforms the 

MCM in recovering the underlying year-on-year transition process as well as in deriving the long-

run transition matrix and predicting the future distribution of farm sizes. 

 

Keywords: structural change, unobserved heterogeneity, Markov chain, mover-stayer model, em 
algorithm 
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"Movers" et "stayers" en agriculture : une prise en compte de l'hétérogénéité inobservée 

dans le changement structurel 

 

Résumé  

Nous comparons les performances respectives du modèle « mover-stayer » (MSM) et du modèle 

de chaîne de Markov (MCM) afin d’étudier si la prise en compte de l’hétérogénéité inobservée 

dans les taux de mouvement entre classes de taille améliore la représentation du processus de 

transition. Le MCM est devenu un outil largement utilisé en économie agricole pour représenter le 

changement structurel des exploitations et étudier l’impact de différents facteurs, notamment les 

aides publiques, sur ce processus. Même si certains travaux intègrent une certaine hétérogénéité 

entre exploitations en faisant dépendre les probabilités de transition de variables caractéristiques 

des exploitations et/ou des exploitants, seule l’hétérogénéité observée a été prise en compte 

jusqu’à maintenant. Partant de l’hypothèse que le changement structurel peut également dépendre 

de caractéristiques inobservées des exploitations et/ou des exploitants, nous présentons une 

application du MSM qui consiste à considérer un mélange de deux types d’exploitations : les 

« stayers » qui restent indéfiniment dans leur catégorie de taille initiale, et les « movers » qui 

suivent un processus Markovien de degré 1. Cette approche permet ainsi de relâcher l’hypothèse 

d’homogénéité dans le processus de transition qui sous-tend le MCM habituel. Nous présentons 

ensuite comment estimer le modèle grâce à la méthode du maximum de vraisemblance et à 

l’algorithme EM (expectation-maximization). Une application empirique à un panel 

d’exploitations françaises observées sur la période 2000-2013 montre que le MSM permet de 

mieux représenter le processus annuel de transition que le MCM et ainsi de dériver une meilleure 

matrice de transition à long-terme, conduisant au final à mieux prédire la distribution future des 

tailles des exploitations. 

 

Mots-clés : changement structurel, hétérogénéité inobservée, chaîne de Markov, modèle mover-

stayer, algorithme EM 

 

Classifications JEL : Q12, C15, D92 
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Movers and stayers in the farming sector: accounting for unobserved
heterogeneity in structural change

1 Introduction

The agricultural sector has faced important structural changes over the past decades. In most
developed countries, particularly in Western Europe and the United States, the total number of
farms has decreased significantly and the average size of farms has increased continually, im-
plying changes in the distribution of farm sizes. According to Weiss (1999), such changes may
have important consequences for equity within the agricultural sector (regarding income distri-
bution and competitiveness among farms), for the productivity and efficiency of farming, and
on the demand for government services and infrastructure and the well-being of local commu-
nities. Thus, structural change has been the subject of considerable interest among agricultural
economists and policy makers. Such studies aim in particular at understanding the mechanisms
underlying these changes in order to identify the key drivers that influence the observed trends,
and to generate prospective scenarios.
As Zimmermann, Heckelei, and Dominguez (2009) showed, it has become quite common in
the agricultural economics literature to study the way farms experience structural change using
to the so-called Markov chain model (MCM). Basically, this model states that the size of a
farm at a given date is the result of a probabilistic process which only depends on its size in
previous periods. Methodologically, most of these studies have used ‘aggregate’ data, that is,
cross-sectional observations of the distribution of a farm population into a finite number of size
categories. Such data are often easier to obtain than individual-level data, and Lee, Judge, and
Takayama (1965) and Lee, Judge, and Zellner (1977) demonstrated that robustly estimating an
MCM from such aggregate data is possible. More recently, because estimating an MCM may
well be an ill-posed problem since the number of parameters to be estimated is often larger than
the number of observations (Karantininis, 2002), much effort has been dedicated to developing
efficient ways to parameterize and estimate these models, ranging from a discrete multinomial
logit formulation (MacRae, 1977; Zepeda, 1995), the maximization of a generalized cross-
entropy model with instrumental variables (Karantininis, 2002; Huettel and Jongeneel, 2011;
Zimmermann and Heckelei, 2012), a continuous re-parameterization (Piet, 2011), to the use of
Bayesian inference (Storm, Heckelei, and Mittelhammer, 2011).
Empirically, MCMs were first used within a stationary and homogeneous approach, assum-
ing that transition probabilities were invariant over time and that all agents in the population
changed categories according to the same unique stochastic process. Despite improvements in
the specification and estimation of this basic model, the resulting estimated parameters gener-
ally lead to erroneous forecasts of farm size distributions (Hallberg, 1969; Stavins and Stanton,

4



Working paper SMART-LERECO N◦15-06

1980) because of this homogeneity assumption. Several studies have therefore been devoted to
improving the Markov chain modeling framework. Two directions in particular have been inves-
tigated. First, assuming that transition probabilities of farms may vary over time, non-stationary
MCMs have been developed in order to investigate the effects of time-varying variables on farm
structural change, including agricultural policies (see Zimmermann, Heckelei, and Dominguez
(2009) for a review). Second, assuming that the transition process may differ depending on
certain characteristic of farms and/or farmers (such as regional location, type of farming, le-
gal status, age group, etc.), some studies have accounted for farm heterogeneity in modeling
structural change.
Our article adds to this second strand of the literature. Using MCMs, farm heterogeneity has
usually been incorporated either by letting the transition probabilities depend on a set of dummy
variables (see Zimmermann and Heckelei (2012) for a recent example) or by fitting the usual
MCM to sub-populations, partitioned ex-ante according to certain exogenous variables (Huettel
and Jongeneel, 2011). To our knowledge, only observed heterogeneity has thus been considered
in these studies, implying that all farms that share the same observed characteristics follow
the same stochastic process. In this article, as can be found in other strands of the economic
literature (Langeheine and Van de Pol, 2002), we argue that the factors driving the evolution of
the structure of the farms at the individual level may also relate to unobserved characteristics
of farms and/or farmers. However, accounting for such an unobserved heterogeneity among
farms requires working at the individual level rather than the ’aggregate’ level. Therefore,
as farm-level data has become more widely available, we propose to using a more general
modeling framework than the simple MCM, namely the mixed-MCM (M-MCM), which exactly
enables unobserved heterogeneity in the transition process to be accounted for. As mentioned,
this extended modeling framework has so far been applied to the study of economic issues,
such as labor mobility (Blumen, Kogan, and McCarthy, 1955; Fougère and Kamionka, 2003),
credit rating (Frydman and Kadam, 2004; Frydman and Schuermann, 2008), income or firm
size dynamics (Dutta, Sefton, and Weale, 2001; Cipollini, Ferretti, and Ganugi, 2012), but not
yet to the agricultural sector.
Since structural change in agriculture refers to a long-run process (it may take time for farms
to make just one transition from one size category to another), we assume that accounting for
unobserved heterogeneity in the rate of movement of farms may allow the underlying data
generating process to be recovered in a more efficient way than in the homogeneous MCM.
This extended modeling framework should therefore also lead to better forecasts of farm size
distribution and to a more efficient investigation of the effects on farm structural change of time-
varying variables, including agricultural policies as well as observed individual farms and/or
farmers’ characteristics. As an illustration, we apply the simplest version of the M-MCM, the
mover-stayer model (MSM), to estimate transition probability matrices and to perform short-
to long-run out-of sample projections of the distribution of farm sizes. We do this using an
unbalanced panel of 17,285 commercial French farms observed during the period 2000-2013.
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The objective is to compare the performance of the MSM extended modeling framework with
the simple MCM, first, in predicting the size transition probabilities of farms and, second, in
performing farm size distribution forecasts over time.
With respect to the agricultural economics literature, the originality of this article is therefore
threefold. First, we implement the MSM to account for unobserved heterogeneity across farms
in their size change behavior. Second, we compare this extended modeling framework to the
standard MCM in order to assess which model performs better in estimating the underlying
transition process. Third, we use a bootstrap sampling method to compute robust standard
errors for the transition probabilities we estimate and the farm size distributions we predict.
The article is structured as follows. In the first section we introduce how the traditional MCM
can be generalized into the M-MCM and how the specific MSM is derived. In the next two
sections we describe the method used to estimate the MSM parameters and the two measures,
namely the likelihood ratio (LR) and the average marginal error (AME), used to compare the
respective performances of the MCM and the MSM. Then we report our application to France,
starting with a description of the data used and following with a presentation of the results.
Finally, we conclude with some considerations on how to further extend the approach described
here.

2 Modeling a transition process using the Markov chain frame-
work

Consider a population of N agents which is partitioned into a finite number J of categories or
‘states of nature’. Assuming that agents move from one category to another during a certain
period of time r according to a stochastic process, we define the number nj,t+r of individuals in
category j at time t+ r as:

nj,t+r =
J∑
i=1

ni,tp
(r)
ij,t (1)

where ni,t is the number of individuals in category i at time t, and p(r)ij,t is the probability of
moving from category i to category j between t and t + r. As such, p(r)ij,t is subject to the
standard non-negativity and summing-up to unity constraints for probabilities:

p
(r)
ij,t ≥ 0, ∀i, j, t∑J

j=1 p
(r)
ij,t = 1, ∀i, t.

(2)

In the following, without loss of generality, we restrict our analysis to the stationary case where
the r-step transition probability matrix (TPM), P

(r)
t = {p(r)ij,t}, is time-invariant, i.e., P

(r)
t = P(r)

for all t. In matrix notation, equation (1) can then be rewritten as:

nt+r = nt ×P(r) (3)
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where nt+r = {nj,t+r} and nt = {nj,t} are row vectors.
Using individual level data, the observed r-step transition probabilities can then be computed
from a contingency table as:

p
(r)
ij =

ν
(r)
ij∑
j ν

(r)
ij

(4)

where ν(r)ij is the total number of r-step transitions from category i to category j during the
period of observation and

∑
j ν

(r)
ij the total number of r-step transitions out of category i.

2.1 The simple Markov chain model (MCM)

The first-order Markov chain consists in assuming that the category of an agent in any period
depends only on its situation in the very preceding period. Then, Anderson and Goodman
(1957) showed that the maximum likelihood estimator of Π, the 1-year TPM under the MCM,
corresponds to the observed transition matrix, that is, Π = P(1).
Under the MCM and stationarity assumption, the r-step TPM (Π(r)) is then obtained by raising
the 1-step transition matrix to the power r:

Π(r) = (Π)r. (5)

In doing so, the MCM approach assumes that agents in the population are homogeneous, i.e.,
they all move according to the same stochastic process described by Π. However, in general,
while Π is an unbiased estimator of P(1), Π(r) proves to be a poor estimate of P(r) (Blumen,
Kogan, and McCarthy, 1955; Spilerman, 1972). In particular, the main diagonal elements of
Π(r) largely underestimate those of P(r). This means that, in general, π(r)

ii � p
(r)
ii . In other

words, the simple MCM tends to overestimate the mobility of agents because of the homogene-
ity assumption.

2.2 Accounting for unobserved heterogeneity: the mixed Markov chain
model (M-MCM)

One way to obtain a 1-step TPM which leads to a more consistent r-step estimate consists in
relaxing the assumption of homogeneity in the transition process which underlies the MCM
approach.
Frydman (2005) proposed grounding the source of population heterogeneity on the rate of
movement of agents; agents may move across categories at various speeds, each according
to one of several types of transition process. This usually constitutes unobserved heterogeneity
because observing the set of transitions an agent actually experienced does not unambiguously
reveal, in general, which stochastic process generated this specific sequence, hence the agent’s
type.
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Implementing this idea leads to considering a mixture of Markov chains in order to capture
the population heterogeneity. More precisely, consider that the population is partitioned (in an
unobservable way) into a discrete number G of homogeneous types of agents instead of just
one, each agent belonging to one and only one of these types. Assuming that each agent type
is characterized by its own elementary Markov process, the general form of the M-MCM then
consists in decomposing the 1-step transition matrix as:

Φ = {φij} =
G∑
g=1

SgMg (6)

where Mg = {mij,g} is the TPM defining the 1-step Markov process followed by type-g agents,
and Sg = diag(si,g) is a diagonal matrix which gathers the shares of type-g agents in each
category. Since every agent in the population has to belong to one and only one type g, the
constraint that

∑G
g=1 Sg = I must hold, where I is the J × J identity matrix.

Since we consider here the stationary case only, it is assumed that neither Mg nor Sg varies over
time. Then, the r-step TPM for any future time period r can be defined as the linear combination
of the r-step G processes:

Φ(r) =
G∑
g=1

Sg(Mg)
r. (7)

With the MCM and M-MCM modeling frameworks defined as above, it should be noted that:
(i) the M-MCM reduces to the MCM if G = 1, that is, only one type of agents is considered or,
equivalently, the homogeneity assumption holds; and (ii) the aggregate overall M-MCM process
described by Φ(r) as defined by equation (7) may no longer be Markovian even if each agent
type follows a specific Markov process.

2.3 A simple implementation of the M-MCM: the Mover-Stayer model
(MSM)

Since the number of parameters to estimate increases rapidly with the number of homogeneous
agent types (G), the estimation of matrix P as defined in the general case by equation (6) can
quickly become an ill-posed problem.1 Here, we stick to the simplest version of the M-MCM,
namely the MSM first proposed by Blumen, Kogan, and McCarthy (1955). In this restricted
approach, only two types of homogeneous agents are considered, those who always remain in
their initial category (the ‘stayers’) and those who follow a first-order Markovian process (the
‘movers’). Formally, this leads to rewriting equation (6) in a simpler form as:

Φ = S + (I− S)M. (8)

1To solve this issue in the general case, Frydman (2005) proposed a parameterization of the M-MCM to de-
crease the number of parameters to be estimated (see appendix).
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With respect to the general formulation (6), this corresponds to setting G = 2 and defining
S1 = S and M1 = I for stayers, and S2 = (I− S) and M2 = M for movers.2 Thus, following
equation (7), the MSM overall population r-step TPM can be expressed as:

Φ(r) = S + (I− S) (M)r. (9)

3 Estimation method

In their early attempt to empirically implement the MSM, Blumen, Kogan, and McCarthy
(1955) used a simple calibration method to estimate the parameters of the model. Then, since
Goodman (1961) showed that the Blumen, Kogan, and McCarthy (1955) estimators are actually
biased, alternative methods were developed to obtain consistent estimates using, for example,
minimum chi-square (Morgan, Aneshensel, and Clark, 1983), maximum likelihood (Frydman,
1984) or Bayesian inference (Fougère and Kamionka, 2003). Frydman (2005) was the first to
develop a maximum likelihood estimation method for the general M-MCM (see appendix). In
the following, we present the corresponding strategy in the simplified case of the MSM, which
consists of two steps: first, under complete information, that is, as if the population heterogene-
ity were perfectly observable; second, under incomplete information, that is, accounting for the
fact that the population heterogeneity is not actually observed.

3.1 Likelihood maximization under complete information

Under complete information the status of each agent k, either stayer (denoted ‘S’) or mover
(denoted ‘M ’), is perfectly known ex-ante and can be recorded through a dummy variable Yk,S
where Yk,S = 1 if agent k is a stayer and Yk,S = 0 if agent k is a mover.
The log-likelihood of the MSM for the whole population is then:

logL =
N∑
k=1

Yk,Sloglk,S +
N∑
k=1

(1− Yk,S)loglk,M (10)

where the first sum on the right hand side is the overall log-likelihood associated with stayers
and the second sum is the overall log-likelihood associated with movers.
At the individual level, conditional on knowing that k was initially in size category i:

• the likelihood that agent k is a stayer, lk,S , is given by si the share of agents who never
move out of category i during the whole period of observation (see appendix);

2With respect to Frydman (2005)’s specification of the M-MCM presented in the appendix, the mover-stayer
model is equivalent to imposing the rate of movement for stayers as zero.
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• the likelihood that agent k is a mover is (Frydman and Kadam, 2004):

lk,M = (1− si)
∏
i 6=j

(mij)
νij,k

∏
i

(mii)
νii,k (11)

where νij,k is the number of transitions from category i to category j made by agent k and
νii,k is the total number of times agent k stayed in category i. On the right hand side of
equation (11), the first product is thus the probability of agent k moving out of category
i, while the second product is the probability of agent k staying in category i from one
period to the next, even though k is a mover.

Substituting lk,S and lk,M in equation (10), the log-likelihood of the MSM for the whole popu-
lation can be expressed as:

logL =
∑
i

nilog(1− si) +
∑
i

ni,Slog(si/(1− si)) +
∑
i 6=j

νijlog(mij) +
∑
i

νii,M log(mii)

(12)
where ni and ni,S are, respectively, the numbers of agents and stayers who were initially in
category i, νij =

∑
k νij,k is the total number of transitions from category i to category j,

νii,M =
∑

k (1− Yk,s)νii,k is the total number of times movers stayed in category i, andmij and
mii are the elements of the generator matrix (M) of movers.
Then, maximizing equation (12) with respect to the unknown parameters si and mij leads to the
optimal values of the MSM parameters:

• solving for ∂logL/∂si = 0 yields the optimal share of stayers in each category i:

ŝi =
ni,S
ni

(13)

• solving for ∂logL/∂mij = 0 for i 6= j and noting that, by definition of M as a stochastic
matrix, mii = 1−

∑
i 6=jmij yields:

m̂ii =
νii,M

νi + νii,M
(14)

and
m̂ij =

νij
νi

(1− m̂ii) ∀i 6= j (15)

where νi =
∑

j 6=i νij is the total number of transitions out of category i.

3.2 The expectation-maximization (EM) algorithm under incomplete in-
formation

Since, as already mentioned, it is unlikely in practice that one knows beforehand which agents
are stayers and which are movers, equation (12) cannot be used directly to estimate the MSM
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parameters. Indeed, because the transition process is assumed to be a stochastic process, even
movers may remain for a long time in their initial category before moving, so that they may not
appear as movers but as stayers over the observed period. Therefore, Fuchs and Greenhouse
(1988) suggested that the MSM parameters could be estimated using the EM algorithm devel-
oped by Dempster, Laird, and Rubin (1977): rather than observing the dummy variable Yk,S ,
the EM algorithm allows its expected value E(Yk,S) to be estimated, i.e., the probability for
each agent k to be a stayer, given agent k’s initial category and observed transition sequence.
Following Frydman and Kadam (2004), the four steps of the EM algorithm are defined in the
case of the MSM as follows.

(i) Initialization: Arbitrarily choose initial values s0i for the shares of stayers and m0
ii for the

main diagonal entries of the generator matrix (M) of movers.

(ii) Expectation: At iteration p of the algorithm, compute the probability of observing agent
k as generated by a stayer, Ep(Yk,S). If at least one transition is observed for agent k then set
Ep(Yk,S) = 0, otherwise set it to:

Ep(Yk,S) =
spi

spi + (1− spi )(m
p
ii)
νii,k

(16.i)

Then compute:

• the expected value of the number of stayers in category i, Ep(ni,S), as:

Ep(ni,S) =
∑
k

Ep(Yk,S) (16.ii)

• and the expected value of the total number of times movers remain in category i,Ep(νii,M),
as:

Ep(νii,M) =
∑
k

(1− Ep(Yk,S))νii,k (16.iii)

(iii) Maximization: Update spi and mp
ii as follows:

sp+1
i =

Ep(ni,S)

ni
and mp+1

ii =
Ep(νii,M)

νi + Ep(νii,M)
(16.iv)

(iv) Iteration: Return to expectation step (ii) using sp+1
i andmp+1

ii and iterate until convergence.

When convergence is reached, the optimal values s∗i and m∗ii are considered to be the estimators
ŝi and m̂ii. Then, m̂ij derives from m̂ii as in equation (15).
Following Frydman (2005), the standard errors attached to the MSM parameters can be com-
puted directly from the EM equations using the method proposed by Louis (1982) (see ap-
pendix). The standard errors attached to the overall 1-year TPM Φ can then be derived applying
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the standard Delta method to equation (8). Finally, because it is more complicated to apply the
Delta method to equation (9) as it involves powers of matrices, we used a bootstrap sampling
method to compute standard errors attached to the r-step TPMs M(r) and Φ(r) (Efron, 1979;
Efron and Tibshirani, 1986).

4 Model comparison

Two types of analysis were performed to assess whether or not the MSM outperforms the MCM.

4.1 Likelihood ratio (LR) test

The likelihood ratio test allows the in-sample performance of the two models in recovering
the data generating process to be compared. As stated by Frydman and Kadam (2004), the
likelihood ratio statistic for the MSM is given by:

LR =
LMCM(Π̂)

LMSM(Ŝ, M̂)
(17)

where LMCM and LMSM are the estimated maximum likelihoods for the MCM and the MSM,
respectively. Theoretically, the asymptotic distribution of −2log(LR), under H0, is chi-square
with (G − 1) × J degrees of freedom. In the case of the MSM, the likelihood ratio tests the
hypothesis that the process follows a MCM (H0 : Ŝ = 0) against the hypothesis that it is a
mixture of movers and stayers (H1 : Ŝ 6= 0). The observed log-likelihood for both models
can be derived from equation (10), by imposing Yk,S = 0 for all agents k for the MCM and by
replacing Yk,S by its optimal expected value (E∗(Yk,S)) for the MSM.

4.2 Average Marginal Error (AME)

The estimated parameters were used to compute the corresponding r-step TPMs, i.e., Π̂(r) =

(Π̂)r for the MCM and Φ̂(r) = Ŝ + (I− Ŝ)(M̂)r for the MSM. These r-step TPMs were then
used to perform out-of-sample short- to long-run projections of farm distributions across size
categories according to equation (1) (see below).
On the one hand, TPMs from both models were compared to the observed one, providing a
second in-sample assessment complementary to the likelihood ratio test. This comparison was
based on the average marginal error (AME) defined by Cipollini, Ferretti, and Ganugi (2012)
as:

AME =
1

J × J
∑
i,j

√√√√( p̂(r)ij − p(r)ij
p
(r)
ij

)2

(18)

where p̂(r)ij and p(r)ij are the predicted and observed TPM entries, respectively:
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• p̂(r)ij ≡ π̂
(r)
ij under the MCM while p̂(r)ij ≡ φ̂

(r)
ij under the MSM

• p(r)ij derives from equation (4).

On the other hand, AMEs were similarly computed for both the MCM and MSM projections of
farm size distributions with respect to the actually observed ones, providing an out-of-sample
comparison of the models.
In contrast to some dissimilarity indexes (Jafry and Schuermann, 2004) or the matrix of resid-
uals (Frydman, Kallberg, and Kao, 1985), the AME provides a global view of the distance
between the predicted TPM or population distribution across size categories and the observed
ones. It can be interpreted as the average percentage of deviations on predicting the observed
TPM or population distribution across size categories. Thus, the higher the AME, the more
different the computed TPM or distribution with respect to the observed one. The better model
is therefore the one which yields the lowest AME.

5 Data

In our empirical application, we used the 2000-2013 data of the “Réseau d’Information Compt-
able Agricole” (RICA), the French implementation of the Farm Accountancy Data Network
(FADN). FADN is an annual survey which is defined at the European Union (EU) level and is
carried out in each member state. The information collected at the individual level relates to
both the physical and structural characteristics of farms and their economic and financial char-
acteristics. Note that, to comply with accounting standards which may differ from one country
to the other (e.g., the recording of asset depreciation), the questionnaire defined at the EU level
may be adapted at the national level, which is the case for France, but this had no consequences
for our study.
In France, RICA is produced and disseminated by the statistical and foresight office of the
French ministry for agriculture. It focuses on ‘middle and large’ farms (see below) and con-
stitutes a stratified and rotating panel of approximately 7,000 farms surveyed each year. Some
10% of the sample is renewed every year so that, on average, farms are observed during 5 con-
secutive years. However, some farms may be observed only once, and others several, yet not
consecutive, times. Some farms remained in the database over the whole of the studied pe-
riod, i.e., fourteen consecutive years. Each farm in the dataset is assigned a weighting factor
which reflects its stratified sampling probability. These factors allow for extrapolation at the
population level.3

As we considered all farms in the sample whatever their type of farming, we chose to con-
centrate on size as defined in economic terms. In accordance with the EU regulation (CE)

3To learn more about RICA France, see http://www.agreste.agriculture.gouv.fr/. The
dataset used in this article directly derives from the version of the RICA publicly available at this address. To
learn more about FADN in general, see http://ec.europa.eu/agriculture/rica/index.cfm.
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No1242/2008, European farms are classified into fourteen economic size (ES) categories, eval-
uated in terms of total standard output (SO) expressed in Euros.4 As mentioned above, in
France, RICA focuses on ‘medium and large’ farms, those whose SO is greater than or equal
to 25,000 Euros; this corresponds to ES category 6 and above. Since size categories are not
equally represented in the sample, we aggregated the nine ES categories available in RICA into
five: strictly less than 50,000 Euros of SO (ES6); from 50,000 to less than 100,000 Euros of
SO (ES7); from 100,000 to less than 150,000 Euros of SO (lower part of ES8); from 150,000
to less than 250,000 Euros of SO (upper part of ES8); 250,000 Euros of SO and more (ES9 to
ES14).
RICA being a rotating panel, farms which either enter or leave the sample in a given year
cannot be considered as actual entries into or exits from the agricultural sector. Thus, we could
not work directly on the evolution of farm numbers but rather on the evolution of population
shares by size categories, i.e., the size distribution in the population. Table 1 presents the year-
on-year evolution by size categories of farm numbers for the extrapolated population, as well
as the number of farms in the sample. It also reports the average ES in thousand of Euros of SO
both at the sample and extrapolated population levels.
Figure 1 shows that the share of smaller farms (below 100,000 Euros of SO) decreased from
56% to 46% between 2000-2013 while the share of larger farms (above 150,000 Euros of SO)
increased from 28% to 38%, and the share of intermediate farms (100,000 to less than 150,000
Euros of SO) remained stable at 16%. As a consequence, as can be seen from table 1 and
figure 1, the average economic size of French farms was multiplied by more than 1.25 over
this period. Note that table 1 also reveals that the size distribution became more heterogeneous
since the standard deviation of the economic size was multiplied by almost 1.5, a feature which
has already been observed for the population of French farms as a whole and in other periods
(Butault and Delame, 2005; Desriers, 2011). Finally, table 1 reveals that these observations also
apply at the sample level, even though the latter is skewed towards larger sizes with respect to
the population as a whole.
In order to assess which model performed better, we compared the MCM and the MSM on the
basis of both in-sample estimation and out-of-sample size distribution forecasts. To do so, we
split the RICA database into two parts: (i) observations from 2000 to 2010 were used to estimate
the parameters of both models; (ii) observations from 2011 to 2013 were used to compare the
actual farm size distributions with their predicted counterparts for both models. Note that, in
doing so we assumed that, in the case of the MSM, eleven years is a long enough time interval
to robustly estimate the transition process of movers.

4SO has been used as the measure of economic size since 2010. Before this date, economic size was measured
in terms of standard gross margin (SGM). However, SO calculations have been retropolated for 2000 to 2009,
allowing for consistent time series analysis (European Commission, 2010).
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Table 1: Distribution by Economic Size (ES) and Average ES for the Studied Sample,
2000-2013

Year Number of farms by ES category Total Average ES

0-50 50-100 100-150 150-250 ≥ 250 (std. dev.)

2000 790 2,234 1,629 1,762 1,342 7,757 168.88 (179.01)
87,924 129,691 59,857 67,367 41,457 386,296 134.46 (151.72)

2001 746 2,231 1,625 1,817 1,382 7,801 170.98 (180.88)
84,442 123,900 57,583 67,741 41,890 375,556 136.75 (155.04)

2002 713 2,128 1,663 1,818 1,443 7,765 177.57 (198.12)
81,228 118,571 58,104 65,448 42,344 365,695 140.99 (184.50)

2003 690 1,975 1,562 1,693 1,393 7,313 176.27 (193.55)
78,249 113,662 56,961 64,946 42,859 356,677 141.08 (176.08)

2004 707 1,940 1,538 1,707 1,437 7,329 177.67 (188.47)
75,481 109,118 56,118 64,252 43,419 348,388 142.63 (169.30)

2005 741 1,927 1,516 1,711 1,467 7,362 178.03 (181.95)
72,896 104,906 54,811 64,112 44,007 340,732 144.55 (161.46)

2006 756 1,922 1,488 1,688 1,491 7,345 181.21 (209.21)
70,516 101,035 54,202 63,443 44,740 333,936 146.99 (171.49)

2007 774 1,845 1,552 1,694 1,511 7,376 182.27 (191.10)
68,286 97,435 54,032 62,390 45,491 327,634 150.08 (172.33)

2008 780 1,866 1,511 1,721 1,587 7,465 185.49 (200.25)
66,201 94,098 52,412 62,889 46,338 321,938 153.47 (185.00)

2009 778 1,816 1,517 1,734 1,624 7,469 188.43 (205.95)
64,243 90,970 51,137 63,151 47,278 316,779 156.14 (186.03)

2010 652 1,885 1,537 1,770 1,608 7,452 190.53 (199.03)
62,429 88,104 51,320 62,062 48,267 312,182 157.88 (174.96)

2011 638 1,856 1,468 1,791 1,658 7,411 194.89 (207.58)
60,743 85,444 49,285 63,292 49,381 308,145 162.11 (189.23)

2012 651 1,797 1,396 1,794 1,679 7,317 200.28 (249.45)
59,152 82,943 47,911 63,953 50,626 304,585 166.69 (227.41)

2013 658 1,769 1,361 1,804 1,701 7,293 202.41 (240.15)
57,668 80,638 46,821 64,414 51,939 301,480 169.49 (225.53)

Note: ES in 1,000 Euros of standard output (SO). For each year, the first row reports figures at the sample level and the second row reports
figures for the extrapolated population.

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Figure 1: Extrapolated population shares by farm size categories and average economic size
(ES)

Source: Agreste, RICA France 2000-2013 – authors’ calculations
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Table 2: Number of Individual Farms, Observations and Transitions by Subsamples

Subsamples

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Farms 13,123 11,291 9,322 7,680 6,257 5,107 4,112 3,448 2,801 2,170
Observations 78,434 74,770 68,863 62,295 55,180 48,280 41,315 36,003 30,180 23,870
1-year transitions
∀(i, j) 65,311 63,479 59,541 54,615 48,923 43,173 37,203 32,555 27,379 21,700
∀j 6= i 7,374 7,138 6,672 6,110 5,426 4,700 4,045 3,478 2,889 2,212

Note: subsample #1 corresponds to the subset of farms which remained present in the database for at least two consecutive years; subsample #2 to those which remained for at least three consecutive years; and so forth;
the third row gives the number of observed 1-year transitions from category i to category j, including remaining in the initial category; and the fourth row gives the number of observed 1-year transitions from category i
to category j excluding remainning in the initial category.

Source: Agreste, RICA France 2000-2010 – authors’ calculations
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For in-sample estimations, we also had to restrict the subsample to farms which were present
in the database for at least two consecutive years in order to observe potential transitions. The
corresponding unbalanced panel then comprised 13,123 farms out of the 17,285 farms in the
original database (76%), leading to 78,434 farm×year observations and 65,311 individual 1-
year transitions (including staying in the same category) from 2000 to 2010. Furthermore, ten
subsamples could be constructed from this unbalanced panel, according to the minimum number
of consecutive years a farm remained present in the database, from two to eleven: subsample
#1 thus corresponds to the subset of farms which remained for at least two consecutive years
(full 2000-2010 unbalanced panel); subsample #2 to those which remained for at least three
consecutive years; and so forth, up to subsample #10 which corresponds to the 2000-2010
balanced panel. Table 2 reports the corresponding numbers of individual farms and observed
transitions for each subsample.
Before proceeding with the results, it should finally be noted that because we had to work
with subsets of the full sample, the transition probabilities reported in the next section can only
be viewed as conditional on having been observed over a specific number of consecutive years
during the whole period under study, and therefore should not be considered to be representative
for the whole population of ‘medium and large’ French farms.

6 Results

In this section, we first report the results of in-sample estimations, i.e., the estimated 1-year
TPMs for the MCM and the MSM. Then we compare the models based on in-sample results in
order to assess which one performs better in recovering the underlying transition process both
from a short-run and a long-run perspective. Finally, we compare the models in their ability to
forecast future farm size distributions based on out-of-sample observations.

6.1 In-sample estimation results

The MCM and MSM parameters were estimated for each of the ten subsamples described in the
previous section. But because it would take too much space to report the results for all of them,
only those for subsample #10 are reported here, that is, using the 2000-2010 balanced panel
which consists of 2,170 individual farms and 21,700 observed transitions over the 11 years (see
last column of table 2). However, when any of the other subsamples are considered, the results,
and hence conclusions, remain very similar to those reported here.5

Table 3 reports the 1-year TPM estimated from subsample #10 under the MCM assumption. As

5Actually, it turned out that considering subsamples which include farms remaining for a shorter period in
the database added noise to the estimation of both models: the less time farms remain in the database, the more
incomplete the information about them, i.e., the more difficult the estimation of their true behavior. Thus, the
AMEs were higher with low rank subsamples than with high rank subsamples, subsample #10 eventually yielding
the lowest AMEs.
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is usually found in the literature, the matrix is strongly diagonal, meaning that its main diagonal
elements exhibit by far the largest values and that probabilities rapidly decrease as we move
away from the main diagonal. This means that, overall, farms are more likely to remain in their
initial size category from one year to the next. Note that this does not mean no size change at
all but, at least, no change sufficient to move to another category as we defined them.

Table 3: Estimated 1-Year TPM under MCM (Π̂) (subsample #10)

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S

cl
as

s

0-50 0.917 0.079 0.002 0.002 0.001
(0.024) (0.007) (0.001) (0.001) (0.001)

50-100 0.030 0.898 0.065 0.005 0.002
(0.002) (0.013) (0.004) (0.001) (0.001)

100-150 0.002 0.062 0.854 0.080 0.002
(0.001) (0.004) (0.014) (0.004) (0.001)

150-250 0.001 0.004 0.054 0.886 0.055
(0.000) (0.001) (0.003) (0.012) (0.003)

≥ 250 0.000 0.001 0.003 0.048 0.948
(0.000) (0.001) (0.001) (0.003) (0.014)

Log-likelihood: logLMCM = −8, 689.36
Note: estimated parameters in bold font, standard errors in parentheses.

Source: Agreste, RICA France 2000-2010 – authors’ calculations

Table 4 reports the estimated shares of stayers and generator matrix of movers along with the
corresponding 1-year TPM for the whole population under the MSM assumption, and also for
subsample #10. Two main results can be drawn from this table. First, the estimated stayer shares
(panel a of table 4) show that the probability of being a stayer is close to or above 30% whatever
the category considered; it reaches almost 50% for farms below 50,000 Euros of SO and is even
higher than 60% for farms over 250,000 Euros of SO. This means that, according to the MSM
and depending on the size category, at least 30% of the farms are likely to remain in their initial
category for at least 10 more years. Second, the generator matrix (panel b of table 4) reveals
that even though movers are by definition expected to transit from one category to another in
the next ten years, yet the highest probability for them is to remain in the same category from
one year to the next. Since the average time spent by movers in a particular category is given
by 1/(1 −mii) (see appendix), it can be seen from table 4 that movers in the intermadiate ES
class (1/(1 − 0.793) = 4.8) were likely to remain in the same category for almost five years,
while those above 250,000 Euros of SO (1/(1 − 0.875) = 8) were likely to remain for eight
years before moving. In other words, farms which remained in a particular category for quite
a long time (theoretically even over the whole observation period) were not necessarily stayers
but may well be movers who had not yet moved. Altogether, these two results yield a 1-year
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Table 4: Estimated Stayer Shares (ŝi), Mover Generator Matrix (M̂) and Overall Population
1-Year TPM (Φ̂) (subsample #10)

E
S

cl
as

s

0-50 0.494
(0.036)

50-100 0.422
(0.021)

100-150 0.291
(0.016)

150-250 0.371
(0.017)

≥ 250 0.650
(0.021)

a) Stayer shares (ŝi)

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S

cl
as

s

0-50 0.837 0.154 0.004 0.004 0.001
(0.041) (0.012) (0.002) (0.002) (0.001)

50-100 0.055 0.815 0.118 0.009 0.003
(0.004) (0.022) (0.006) (0.002) (0.001)

100-150 0.002 0.089 0.793 0.113 0.003
(0.001) (0.005) (0.020) (0.005) (0.001)

150-250 0.002 0.007 0.087 0.816 0.088
(0.001) (0.001) (0.004) (0.020) (0.004)

≥ 250 0.001 0.003 0.007 0.114 0.875
(0.001) (0.001) (0.002) (0.007) (0.027)

b) Mover generator matrix (M̂)

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S

cl
as

s

0-50 0.917 0.078 0.002 0.002 0.001
(0.019) (0.011) (0.001) (0.001) (0.001)

50-100 0.032 0.893 0.068 0.005 0.002
(0.003) (0.012) (0.005) (0.001) (0.001)

100-150 0.002 0.062 0.854 0.080 0.002
(0.001) (0.004) (0.014) (0.005) (0.001)

150-250 0.001 0.005 0.055 0.884 0.055
(0.000) (0.001) (0.004) (0.012) (0.004)

≥ 250 0.000 0.001 0.003 0.040 0.956
(0.000) (0.001) (0.001) (0.005) (0.009)

c) Overall population TPM (Φ̂)

Log-likelihood: logLMSM = −8, 384.08
Note: estimated parameters in bold font, standard errors in parentheses.

Source: Agreste, RICA France 2000-2010 – authors’ calculations
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TPM for the whole population which is also highly diagonal (panel c of table 4).

6.2 In-sample model comparison

Both models are in agreement in estimating that, at the overall population level, farms were
more likely to remain in their initial size category from year to year, confirming that structural
change in the agricultural sector is a slow process which needs to be investigated in the long-
run. In this respect, while the 1-year TPMs look very similar across both models, the resulting
long-run transition model differs between the MCM, given by equation (5), and the MSM, given
by equation (9). It is therefore important to assess which model performs better in recovering
the true underlying transition process.
The first assessment method used, namely the likelihood ratio test, reveals that the MSM
yields a better fit than the MCM: the value of the test statistic as defined by equation (17) is
−2log(LR) = −2 × (−8, 689.36 + 8, 384.08) = 610.56, which is highly significant since the
critical value of a chi-square distribution with (G− 1)× J = 5 degrees of freedom and the 1%
significance level is χ2

0.99(5) = 15.09. This leads to the rejection of the H0 assumption that the
stayer shares are all zero, and thus to the conclusion that the MSM allows the data generating
process to be recovered in a more efficient way than the MCM. The MSM should therefore also
lead to a better approximation of transition probabilities in the long-run.
The second assessment method used allows this very point to be assessed. Estimated parameters
for both models were used to derive the corresponding 10-year TPMs, namely Π̂(10) = (Π̂)10

for the MCM and Φ̂(10) = Ŝ + (I− Ŝ)(M̂)10 for the MSM. These estimated long-run matri-
ces were then compared to the observed one, P(10), which is derived from equation (4) and
subsample #10. It appears from visual inspection of the three corresponding panels of table 5
that the MSM 10-year matrix more closely resembles the actually observed one than the MCM
10-year matrix. In particular, we find as expected that the diagonal elements of Π̂(10) largely
underestimate those of P(10) while those of Φ̂(10) are much closer. This means that the MCM
largely tends overestimate the mobility of farms in the long-run, with respect to the MSM. The
AMEs reported in table 6 confirm the superiority of the MSM over the MCM in modeling the
long-run transition process. The AME for the overall predicted 10-year TPM is around 0.95 for
the MCM while it is about 0.78 for the MSM. This means that the MSM is about 17 percentage
points closer to the observed TPM than the MCM in the long-run. However, the AMEs also
confirm that the improvement comes mainly from the main diagonal elements: when only these
are considered, the MSM performs about five times better than the MCM (0.292/0.057 = 5.1),
while both models are almost comparable for off-diagonal elements, with the MCM this time
performing slightly better (0.657/0.724 = 0.9).
Finally, table 5 also shows that the standard errors associated with the elements of the esti-
mated matrices, computed using a standard bootstrapping method with 1,000 replications, are
systematically higher with the MCM than with the MSM; the MSM estimator is thus also more
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Table 5: Observed 10-Year TPM and Predicted 10-Year TPMs for both Models (subsample
#10).

ES class

0-50 50-100 100-150 150-250 ≥ 250
E

S
cl

as
s

0-50 0.715 0.235 0.029 0.014 0.007
50-100 0.107 0.641 0.199 0.038 0.015

100-150 0.020 0.146 0.536 0.268 0.030
150-250 0.010 0.032 0.096 0.630 0.232
≥ 250 0.005 0.021 0.020 0.124 0.830

a) Observed 10-year TPM (P(10))

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S

cl
as

s

0-50 0.476 0.361 0.106 0.043 0.014
(0.028) (0.020) (0.008) (0.006) (0.004)

50-100 0.141 0.467 0.240 0.116 0.036
(0.011) (0.015) (0.011) (0.007) (0.004)

100-150 0.044 0.234 0.338 0.281 0.103
(0.004) (0.011) (0.013) (0.011) (0.007)

150-250 0.015 0.082 0.193 0.428 0.282
(0.002) (0.005) (0.010) (0.013) (0.013)

≥ 250 0.005 0.026 0.068 0.245 0.656
(0.001) (0.003) (0.005) (0.013) (0.018)

b) MCM predicted 10-year TPM (Π̂(10))

ES class

0-50 50-100 100-150 150-250 ≥ 250

E
S

cl
as

s

0-50 0.690 0.140 0.097 0.053 0.020
(0.017) (0.010) (0.007) (0.005) (0.003)

50-100 0.060 0.684 0.126 0.090 0.040
(0.007) (0.010) (0.007) (0.005) (0.003)

100-150 0.041 0.119 0.586 0.164 0.090
(0.004) (0.007) (0.012) (0.009) (0.006)

150-250 0.018 0.062 0.117 0.676 0.127
(0.002) (0.004) (0.006) (0.010) (0.009)

≥ 250 0.005 0.021 0.048 0.093 0.833
(0.001) (0.002) (0.003) (0.005) (0.008)

c) MSM predicted 10-year TPM (Φ̂(10))

Note: estimated parameters in bold font, bootstrap standard errors in parentheses (1,000 replications).

Source: Agreste, RICA France 2000-2010 – authors’ calculations
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Table 6: Average Marginal Error (AME) between the Predicted 10-year TPMs (Π̂(10) and
Φ̂(10)) and the Observed TPM (P(10)) (subsample #10)

Model Overall Main diagonal Off-diagonal
matrix elements elements

MCM 0.949 0.292 0.657
(0.044) (0.010) (0.036)

MSM 0.781 0.057 0.724
(0.034) (0.007) (0.035)

Note: bootstrap standard errors in parenthesss (1,000 replications).

Source: Agreste, RICA France 2000-2010 – authors’ calculations

efficient (in the econometric sense) than the MCM one in recovering the underlying transition
process.

6.3 Out-of-sample projections

In-sample estimation results lead us to conclude that accounting for unobserved heterogeneity
in the rate of movement of farms, as the MSM does, avoids overestimating their mobility across
size categories. The MSM should therefore also lead to a more accurate prediction of the size
distribution of farms in the long run, without hampering that in the short run.
To validate this point, we performed out-of-sample short- to long-run projections of the distri-
bution of farm sizes using the parameters for both models as estimated with subsample #10. To
do so, farm size distributions in 2011, 2012 and 2013 were predicted from a short- to long-run
perspective, by applying the estimated r-step TPMs (for 1 ≤ r ≤ 11) to the corresponding
observed distributions from 2000 to 2012. In other words, distributions in 2011, 2012 and
2013 were predicted: by applying the estimated 1-year TPMs (Π̂ for the MCM and Φ̂ for
the MSM) to the observed distributions in 2010, 2011 and 2012, respectively; by applying the
estimated 2-year TPMs (Π̂(2) = (Π̂)2 for the MCM and Φ̂(2) = Ŝ + (I − Ŝ)(M̂)2 for the
MSM) to the observed distributions in 2009, 2010 and 2011, respectively; and so forth. This
process was continued by applying the estimated r-step TPMs (Π̂(r) = (Π̂)r for the MCM and
Φ̂(r) = Ŝ + (I− Ŝ)(M̂)r for the MSM) to the observed distributions in (2011− r), (2012− r)
and (2013 − r) and varying r up to eleven. Then, the resulting distributions for both models
were compared to the actually observed distributions in 2011, 2012 and 2013 (see table 1). The
corresponding AMEs reported in figure 2 summarize the results obtained for the 1,000 bootstrap
replications.
Four conclusions can be drawn from figure 2. First, as expected, the accuracy of both models
decreases when increasing the time horizon of projection: the computed AMEs are significantly
smaller in the short run than they are in the medium and long run for both models. Second,
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Figure 2: Average marginal error (AME) between the out-of-sample projections of farm size
distributions and the actually observed ones for both models.

Note: see text for an explanation on how short- to long-run projections were obtained; interquartile ranges (Q3-Q1) obtained from the 1,000
bootstrap replications.

Source: Agreste, RICA France 2000-2013 – authors’ calculations

both models almost are almost comparable in the short run, confirming that adopting the MSM
modeling framework does not degrade year-on-year forecasts with respect to the MCM. Third,
the MSM performs significantly better than the MCM in both the medium and long run. For
example, the average AME for the MSM (0.068) is 1.3 times lower than that of the MCM
(0.088) for 5-year interval projections, and 1.5 times lower for 11-year interval projections
(0.082 for the MSM compared with 0.121 for the MCM). Fourth, figure 2 also shows that
the accuracy and robustness of farm size distribution predictions decrease more rapidly for the
MCM than for the MSM when increasing the time horizon of projections, since the AMEs as
well as the interquartile ranges of the 1,000 bootstrap replications increase more rapidly for the
MCM than for the MSM.
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7 Concluding remarks

The modeling framework implemented here, namely the mover-stayer model (MSM), is more
general than the simple Markov chain model (MCM) since it accounts for unobserved hetero-
geneity in the rate of movement of farms. Within this extended framework, the 1-year transition
probability matrix is decomposed into a fraction of ‘stayers’ who remain in their initial size
category and a fraction of ‘movers’ who follow a standard Markovian process. To estimate
the model, we improved Blumen, Kogan, and McCarthy (1955)’s calibration method by using
the elaborate expectation-maximization (EM algorithm) estimation method proposed by Fry-
dman (2005) in order to account for incomplete information. Finally, we computed standard
errors for long-run matrices and farm size distributions using a bootstrap method, with 1,000
replications of each estimation and projection. This allowed the models to be compared in a
statistically robust manner, which adds to the existing literature. Our results show that, with
respect to the MCM, accounting for unobserved farm heterogeneity enables closer estimates of
both the observed transition matrix and the distribution of farms across size categories in the
long-run to be derived, without degrading any short-run analysis. This result is consistent with
the findings in other strands of the economic literature, namely that, by relaxing the assumption
of homogeneity in the transition process which is the basis of the MCM, the MSM leads to a
better representation of the underlying structural change process.
However, this modeling framework remains quite a restricted and simplified version of the more
general model, the mixed-Markov chain model (M-MCM), which we presented as an introduc-
tion to the MSM. Extending the MSM further could therefore lead to even more economically
sound, as well as statistically more accurate, models for the farming sector. We briefly men-
tion some of such extensions which we think are promising. Firstly, more heterogeneity across
farms could be incorporated by allowing for more than two unobserved types. For example,
accounting for different types of movers could yield a better representation of the structural
change process in the farming sector by allowing farms which tend mainly to enlarge to be dis-
entangled from farms which tend mainly to shrink. Secondly, the quite strong assumption of a
‘pure stayer’ type could be relaxed because it may look unlikely that some farms ‘never move at
all’, i.e., will not change size category over their entire lifespan. In this respect, the robustness
of the MSM to the number of years during which farms are observed could be investigated. In-
deed, considering eleven years to perform in-sample estimations, our results show that movers
may stay five to eight years in a given category before experiencing a large enough (positive or
negative) size change to reach another category. We can then infer that the shorter the observa-
tion period, the higher the number of farms which would be inappropriately considered as ‘pure
stayers’. From a methodological point of view, this leads to the conclusion that long enough
panel data needs to be available if the MSM is to be empirically implemented. This could be
seen as a shortcoming of the MSM with respect to the MCM but it is in fact consistent with
farm structural change being a long-run and slow process.
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Our final recommendation is that the proposed modeling framework should be extended to
account for entries and exits and that a non-stationary version of the M-MCM model should
be developed. Since this should allow the transition process to be recovered in an even more
efficient way, it would surely prove to be very insightful for analyzing the factors which drive
structural change in the farming sector, including agricultural policies, not only from a size
distribution perspective, but also as regards the evolution of farm numbers.
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A Appendix

A.1 Frydman (2005)’s specification of the mixed Markov chain model (M-
MCM)

Recall that the general form of the M-MCM is given by equation (6):

Φ = {φij} =
G∑
g=1

SgMg (19)

where Mg = {mij,g} is the TPM defining the 1-step Markov process followed by type-g agents,
and Sg = diag(si,g) is a diagonal matrix which gathers the shares of type-g agents in each
category.
Assuming that all type g TPMs are related to a specific one, arbitrarily chosen as that of the last
type G, Frydman (2005) gives the TPM of any type g as:

Mg = I−Λg + ΛgM for 1 ≤ g ≤ G− 1 (20)

where I is the J × J identity matrix, Λg = diag(λi,g) and M = MG (i.e., ΛG = I), subject
to 0 ≤ λi,g ≤ 1

1−mii
(∀i ∈ J) and 0 ≤ mii ≤ 1, where mii are the main diagonal elements of

matrix M.
Within this specification, the λi,g parameters give information about heterogeneity in the rates
of movement across homogeneous agent types:

• λi,g = 0 if type-g agents originally in category i never move out of i;

• 0 < λi,g < 1 if type-g agents originally in category i move at a lower rate than the
generator matrix M;

• λi,g > 1 if type-g agents originally in category i move at a higher rate than the generator
matrix M.

Then the expected time spent in category i by type-g agents is given by 1
(λi,g(1−mii))

(∀λi,g > 0).
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A.2 Maximum likelihood estimation of the mixed Markov chain model
(M-MCM)

Consider that each agent k is observed at some discrete time points in the time interval [0, Tk]
with Tk ≤ T , where T is the time horizon of all observations. According to Anderson and
Goodman (1957), the likelihood that the transition sequence of agent k (Xk) was generated by
the specific type-g Markov chain (i.e., that k belongs to type g), conditional on knowing that k
was initially in state i, is given by:

lk,g = si,g
∏
i 6=j

(mij,g)
νij,k

∏
i

(mii,g)
νii,k (21)

where si,g is the share of type-g agents initially in category i, νij,k is the number of transitions
from i to j made by agent k (with j 6= i), νii,k is the total time spent by k in category i, and
mii,g and mij,g are the elements of Mg.
Under Frydman (2005)’s specification of the M-MCM as defined by equation (20) the above
likelihood can be rewritten as:

lk,g = si,g
∏
i 6=j

(λi,gmij)
νij,k

∏
i

(1− λi,g + λi,gmii)
νii,k (22)

where λi,g is the relative rate of movement of type-g agents.
Then, the log-likelihood function for the whole population is:

logL =
N∑
k=1

G∑
g=1

(Yk,gloglk,g) (23)

where Yk,g is an indicator variable which equals 1 if agent k belongs to type g and 0 otherwise.
Note that the log-likelihoods of the MCM and MSM can easily be derived from equation (23)
by stating, respectively, G=1 and λi,1 = 1 for the MCM and G=2, λi,1 = 0 and λi,2 = 1 for the
MSM.
The maximum likelihood estimators, ŝi,g, λ̂i,g, m̂ii and m̂ij , are obtained using the EM algorithm
in a similar way to that described in the main text.

A.3 Computing standard errors from EM algorithm equations

Two components are required to compute standard errors from the EM algorithm equations
(Louis, 1982): (i) the observed information matrix given by the negative of the Hessian matrix of
the log-likelihood function and; (ii) the missing information matrix obtained from the gradient
vector, that is, the vector of score statistics based on complete information. Since the log-
likelihood function given by equation (12) is twice differentiable with respect to the model
parameters, the standard errors can be computed as follows.
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Let Ωc(z; ŝi, m̂ij) and Ωm(z; ŝi, m̂ij) (i, j = 1, ..., J) be the observed (d × d) information ma-
trices in terms of complete and missing information, respectively, where Zk = (Xk, Yk) gathers
the transition sequenceXk of agent k and the unobserved agent’s type dummy variable Yk, and d
is the number of estimated parameters. The observed information matrix in terms of incomplete
information can then be derived as:

Ω(x; ŝi, m̂ij) = Ωc(z; ŝi, m̂ij)−Ωm(z; ŝi, m̂ij) (24)

where Ωm(z; ŝi, m̂ij) is given by:

Ωm(z; ŝi, m̂ij) = E[sc(z; ŝi, m̂ij)× sc(z; ŝi, m̂ij)
′] (25)

where sc(z; ŝi, m̂ij) is the vector of score statistics in terms of complete information.
Therefore, if the observed information matrix in terms of incomplete information just described,
Ω(x; ŝi, m̂ij), is invertible, the standard errors are given by:

se = {
√
ψll} (26)

where se is the 1× d vector of standard errors, Ψ = {ψll′} = Ω−1(x; ŝi, m̂ij) is defined as the
asymptotic covariance matrix of the maximum likelihood estimators ŝi and m̂ij (∀i, j = 1, ..., J)
under incomplete information, and l, l′ = 1, ..., d (McLachlan and Krishnan, 2007).
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