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Appendix A. Quadratic perturbation

Given our interpretation oE(s), defined as

(A1) C(s)=h's+1/2xsHs where HOR" xR" is positive definite, hOR" and sORY,

the assumption stating its strict convexitysims debatable. Cropping practices vary much
more across crops than they vary across precedops dor a given crop. Hence, it seems
more sensible to define the acreage managemenas@sfunction of the crop acreage vector
a=As,i.e as

(A2) C?%@) =h'a+1/2xa'Ga whereGOR" xR" is positive definitegOR"* andaORX .

Of courseC?(As) is strictly convex inAs and convex irs, but it is not strictly convex is.
Our approach consists in definirg€(s) as a strictly convex perturbed version of the {onl
convexC?(As) .

The perturbation technique is a mathematical dewbéh is often used in operation
research for obtaining a well-behaved objectivecimm smoothly approximating the
objective function of interest. Linear or quadrapcogramming problems are usually

perturbed by quadratic terms. In our caS€S,) can be defined as

(A3) C(s)=C*(As)+p'ss where p>0

by using the perturbation term™s's, . In this case we have

(Ad4) H=AGA+p7l 0Ol

and it is easily seen thhit is positive definite as long §g3>0. This is so even it =0, i.e.

where the original version problem (S) is a linear programming problemchoose the

perturbation parametep as large as possible ensures that the computed solutions alokereli

approximations to solutions of interest.



The perturbation termp™—ss, is bounded as long & is confined in a compact set. The
feasible sets of the problems considered in the article are all commp#tat case, we know
that C uniformly converges taC°in p - +« on the considered compact set. This implies
that the solutions obtained witG converge inp - +o to solutions of the corresponding
problems defined withC®. This ensures that the solutions to the perturbed versiorseof t
problems of interest are - solutions to the problem of interesk. that the solutions to the

perturbed version of the problem of interest are reliable approximlatess to the problem

of interest. Of course, to choose of very large levelspaé innocuous in a theoretical

analysis but this can generate ill-conditioning issues in pecti



Appendix B. Static problem

This Appendix provides results related to the characterizationeo$tttic problem (S). We
first recall the definitions of a polyhedron, of a polyhedralipant and of piecewise linear

and piecewise quadratic functions which will be used later.

Proposition 1 in the main text is defined as PropositioiBhis Appendix.



Proposition B1. Satic problem

Let consider problem (S)max,,M 6;x) where M(s;z) =sa-C(s) and (S,n)D]RT xRN

Let assume tha€: R} — R is quadratic and strictly convex sron R" |

(i) The solution irs to problem (S) is unique and defines the funcsdhR" — RT by
s’(m) =argmax.,, M ¢ 7 . S is continuous int on RN,

(ii) The solution to problem (S) defines the value funcfibi R" — R by
M°(x) =max_, M &;x). M° is convex inx

(i) S° is piecewise affine anfll® is piecewise quadratic in on R" .

(iv) M° is continuously differentiable oR" with 2N%(m) =s°(n) .

(v) s, is strictly increasing iz, at= if s3, (x)>0. If s3, is constantinz, atz then
S (m) =0.

Let define the functionsly, :R" — R, by d3 =v's;,, for mOx and&:R" - R, by

a =vs, for KOK . Let pOR".

(vi) Let KK . a¢ is strictly increasing iny, atw+p O if ai(x+p0v)>0. If af is
constant iny, atm+p 0Oy thenai(x+pr) =0.

(vii) Let mUXK . d? is strictly decreasing i/, at w—1Op if d)(m—10p)>0.If d2 is

constant iny, atwx—10p thend’ (m—10p)=0.

Proof. The objective function of problem (S) is quadratic and stricthicae®. The feasible
set of problem (S) is polyhedral and has a non-empty interior. Mdke results collected in
Propositions B1 are either well-known or demonstrated in Bemmbedd2002) and Lau and

Womersley (2001).



The only results to be demonstrated are the continuous diftesiity of M° in z on R"
and results\)-(vii). These last results are proven later. These results are given irsiBoopo

C1 because they are given in Proposition 1 in the main text.

The continuous differentiability off1° in = on R" is obtained by applying a result due to
Jittorntrum (1984) (see also Theorems 4.1 and 7.3 in Fiacc&yratisis, 1985). This result
implies that the value function of a constrained strictly concave paranmedximization
problem in s with parametric convex constraints is continuously differentiahleits
parameters at the parameter values if the Linear Independence Constraifitafjoal
(LICQ) condition holds and if the considered problem is suffigfeetnooth. The LICQ
condition holds at an optimum if the gradientssinf the constraint functions of the active
constraints are linearly independent. In the case of problem (S), nilye considered
constraints are the non-negativity constraigatsO. The gradient is of the corresponding

active constraint functions is an identity matrix. As a resultL i) condition holds at any

solution to problem (S) anll® is continuously differentiable i on R". It is then easily
0 5 — &S

shown that” M°(x) =s*(x) .

Results \)-(vii) are parts of Proposition B3 and their proofs are given inofatoposition
B3. It relies on the specific structure of problem (S), as therotasults collected in
Proposition B2.

QED.

Result {ii) implies that there exists a polyhedral partitigh: j ]} of ® such that there
exists (b;,B;) OR" xR™™ such that:

(Bl) S(m)=b;+B;m and*(m) =n'b, +7'B;n+1/2xp, +B;nJH b, +B;n)



if n[]@j for any j7. M° is twice continuously differentiable almost everywhererimon

®. ° is twice continuously differentiable in on int® for any j007. M®is ¢* = on @

but it is not twice continuously differentiable i on the set collecting the separating

frontiers of the polyhedral partitiofi?,: j[J3} . This last set has null Lebesgue measure.

Results Y)-(vii) are parts of Proposition C3 and their proofs are given in thatopioBition
B3. These results rely on the specific structure of Problem (S) waiicivestigated in more

depth thanks to the results provided in Proposition B2. &hesults characterize the

functional forms ofs® and of [1°. They rely on the following definition the regimesof

Definition B1. Regimes

The regime ofs, denotedr(s), is characterized by the subset of =K XK, Ny,

containing the pair¢ém,k) such thats,, >0.

Proposition B2. Functional forms and further properties of M° and of s°

Let assume that the regimes of the solutionstm problem (S)j.e. the regimes of the terms
s’(n) with mlJ® denoted byr®(z), can be characterized IR/regimes defining the regime
set® ={,...,R}.

(i) Let define the Lagrangian problem associated to problem (S) as:

(LS) min,,, max {I1(s,®)+si}

where DR and A is the LM vector associated to the non-negativity constisi®. The

corresponding Karush-Kuhn-Tucker (KKT) conditions:






independence of the gradientssimf their corresponding constraints. The definitionsPpf
and Z, ensures the equivalence of:
n—h+2%(n)—Hs’(n) =0

and of:
P(n=h)] | P () _{PrHP,' P,HZ',} Ps*(n) 0
Z (m=h)| |z2(n)| |Z,HP ZHZ || Z s°(n)
With r°(m)=r, the definitions of P and Z, and the complementarity conditiong.

2%(n)'s’(mr) =0, s°(n) 20 andA°(xwt) =0, provide:

Pl [ 0 ] [PQP PHZ Rs@]_,
zm| |za@)| |ZQP zZHZ || o |

Some manipulations yield:

Ps’(n) =(PHP)'P.(n-h)=G P (n-h)
Z 2(m)=Z HP' (PHP)'P.(n-h)-Z (x-h)=Z L, (x-h)

the second equalities usin, =(PHP)™ and L, =HP' (PHP)™P —I,,. The matrix
PHP is positive definite becausd is definite positive and®. has full row rank. This in
turn ensures thaP HP is invertible and that its invers&, , is also positive definite. The
formula of M*(x) is then obtained by substitution with:
MN*(x) =N(s’(w);w) = (m—h)Ps’(x) -1/ 2xs* (x )P, (P.HP )P.s° (m).
Result {ii) follows from the definition of the regimes and from the KKT cdtiods

uniquely characterizing®(x) and A°(x) for any 0@ OR". If r°(m)=r then the KKT

conditions necessarily provide:

PS(n)=G,P,(n—h) >0
ZA\(m)=Z.L (m—h)=0.



This condition set must also hold if the KKT conditionsply that r°(z) =r . This implies
that his condition set is equivalent td(s) =r , provided that the KKT must hold fa&*(n)
and A°(w) to be optimal.

Result {v) follows from the assumption that the regime®etxhausts all possible regimes

and from resultsi)-(iii). The definition of® shows that it is a polyhedronkY' . Result ¢)
follows from resultsi{) and (v). It then suffices to note th&s, is positive definite and that

P. has full row rank.

QED.

The inequalityZ 2°(z) 20 being equivalentt& x < (Z, HP'G,)P.n+L h, the term

(CB2) z2(P.n)= Z,HPG,)Pr)+L h

can be interpreted as the reservation gross margin vector of the crmmeesyv \ &, in
regimer. This follows from the fact thalZ p<z’(P.w) and Pp =Pz imply s°(p) =s°(nw)
and, in particularZ s° { ¥Z,s° £ ¥0. Such reservation “prices” play an important role in

the econometrics of the demand systems with corner solutions.

Proposition B3 provides results related to the sensitivity aisabyf s° with respect tar .

Proposition B3. Kinks of s°(x), of Ds*(x) and of As®(x)
Let consider the terms*(x) and A°(x) defined in Proposition B1 witar OR" . Let define

u, as theN dimensional column vector with null elements with the exceptiothe /" one
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which is unitary. Let defines, as theK dimensional column vector with null elements with

the exception of thé™ one which is unitary.

(i) Let 7, OR . If 57, (m) =0 then s, (7 +17,, XUy 4gyem) =0 fOr 7, <0. s, () is strictly
increasing inrz,, if s, (w) >0 orif s, () =0=A;, (%).

(ii) Let 1, OR. d;(4,) Vs, (m—p, x10v,) is strictly decreasing i, if d;(4,)>0. If
d;(0)=0 thend;(x,) =0 for u, =0.

(iii) Let g OR . a (1) =v's, (e + 4, xv, Ov) is strictly increasing iny, if a(x,)>0 or if
a(u)=0=A° (m+y xu, Ov) for some mOK. If A (x)>0 for mOK then

alf(/'[k) :O for ym =S O

Proof. The proof of this proposition mainly relies on resuiity §énd ) of Proposition B2.

First note thatZ 1°(w) 20 is equivalent to:

Zn<(ZHPG,)(Pm)+L h.
This implies that ifr(z) =r thenr*(m+Z!p)=r for any pOR ™™ and, as a result, this
implies the second parts of resulis({ii) of Proposition C3.

Provided thatP,s°(n) = -G ,Ph+G, (P.n) if r°(m) =r and thatG, is positive definite we
know thats’, () is strictly increasing iz, if s;, () >0. If a frontier of  a pointz such
that s, () =0=A>, (), then any increase imr, brings the considered point int® where
s, (m) is strictly increasing inz,, . This implies thats;, (x) is also strictly increasing i,
if s, (m)=0=A4; (7).

By the definition of d;(x,) we haved: (4, =00V, )s(m—u,x 0v,), and with
r*(m) =r ands’(z) =P.G,P.(x—h), we obtain:

11



d3(u) =00V _)PG P (x-h)-x xaOv PG P uOvV,)
or d>(u,)=d>(O0)-u xaOv, PGP Ov,). Since G, is positive definite,d () is
strictly increasing ing,, if and only if P, (1O v,,) Z 0. It is easily shown thal, k1O v,,) z 0 if
and only ifs3, (m) >0 for somek %, i.e. if and only if d; (4,,) = Vs, (m =, x 0V, )>0.

The first part of resultiif) can be demonstrated by using a similar approach.

QED.
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Appendix C. Myopic problem

This Appendix provides results related to the characterizationeofmyopic problem (M).

Proposition 2 in the main text is defined as PropositioinGhis Appendix.

13



(vii) Let define the setsm,'(m,a)={y,OR: pOM"(m @)} for nOK . There exists a
functionp™:R" x 2 - R such that:

() M7 (m,2) ={u(m )} if a,>0.

(b) 7 (m,2) = [0 (m, @), +0) if @, =0.

(© 2MN"(m,a)=p"(m,a) for any (m,a) OR" x 4.

(d) p™ is continuous in(m,a) on R" x 4.

Proof. The results collected in){(iii) are either well-known or demonstrated in Bempaatad

al (2002). Resultiy), stating that1™ is continuously differentiable igr,a) on R" x 4, is to

be demonstrated together with resulti)( The result stating thafl™ is continuously
differentiable ina on R" x 7 relies on a specific approach. Note that the tesullected in

Proposition C2, which is given below, are clos@hkéd to result\{i).

The proof of resultsvj and ¢i) rely on the functional form of the Lagrangian ipleom (LM)
associated to problem (M) and on the links of peaid (LM) and (S). Let first remark that the
Lagrangian function associated to problem (M) §a8s

M(s;nt) +A's+p'(@a—Ds) =M (s;a—D'p) +A's+p'a.
The termA is the Lagrange multiplier vector associated ®ribn-negativity constrairg=> 0
and p is the Lagrange multiplier vector associated te thop rotation constrainDs=a.
Result {) then makes uses of the fact that problem (LM)manlecomposed as:

min {min, {max M(sx-10p)+1'st +p'g .

The KKT conditions associated to this Lagrangiaobfgm,i.e.

14



a—-h+L—10p-Hs=0
Ds-a=0 ,
A's=0 withs=0 and.=>0

characterize the solutions i$,A,pn) to this problem. Problem (LM) is also equivalemttihe
following modified Lagrangian problem
min {max_, M (s;x—10p)+p'a}
and, by using Proposition B1, to the following dpedblem:
min {M*(x—10p) +p'a .
This allows rewriting the KKT conditions of ProblegfoM) as:

s"(m,a)=s’(r—10p)
Ds’(r—10p) =a

provided thati is the optimal LM vector of the non-negativity sbraints of Lagrangian
problem associated to the static problemax,, M ;x—10p). These equivalences provide

results ¢) and ¢i).

Before proving resultsiyf) and ¢ii) let consider the case whee >0 for nUXK . With
a,>0 for nOK implies that the (linear) constraints involved groblem (M) which are
active at the optimum cannot be redundaat,are linearly independent. The conditian>0
ensures thats, (w,a) >0 for some k% and, as a result, implies that the non-negativity
constraints, =0 is (strongly) inactive. Hence the condition stgtithat a, >0 for nU XK

that the LICQ condition holds for any solution tmplem (LM). The objective function of
this maximization problem being strictly concaveldwice continuously differentiable, and

its constraints being linear, the results due ttorditrum (1984) reported as Theorems 4.1 and

15



7.3 in Fiacco and Kyparisis (1985) is applicablee3e results give thdl™ is continuously
differentiable in(m,a) on R" x 2% where 2" ={adR",| a1 >0} .
If a,=0 for somenUx or if add.a\ 2", the LICQ condition doesn't hold for the

solutions to problem (LM), implying multiple solotis in elements of the Lagrange

multiplier vectorsh andp. If a, =0 then the crop rotation constrairis,, =a, and the non-
negativity constraints,, =0 imply s, =0, i.e. the constraints,, >0 is active and
redundant withv's, =4, at the optimum of problems (M) and (LM).

We do not proceed by eliminating redundant constisadecause this approach is not well
suited for dealing with dynamic programming probsem/e use results due to Berkeleaiaal
(1997). These authors investigated the differeniiglproperties of the value function of

general quadratic programming problems.

When applied td1™ for derivatives intr Theorem 58 of Berkelaat al (1997) provides:

? N"(m,a)=min,,,{s,s.t. 6.pr)0L @A)}

T,

and:

s N"(m,a)=max,,, {5, st 6u 2 YL & )

where £(m,a) is the subset ofR%" xR"

containing the solutions itfs,A,p) to the KKT

conditions. Provided that"(x,a) is the unique solution isto problem (M) we have:
%I’Im(n,a)Z%I—Im(n,a):Snm(n,a)Z%ﬂm(n,a),

i.e. M™ is differentiable inx on R" x 4. Given thats"(z,a) is continuous it on R" x 7,

M™ is continuously differentiable in on R" x 7.

When applied td1™ for derivatives ina, Theorem 50 of Berkelaat al (1997) yields:

16



a
da,

N™(m,a) =min,,, {4, s.t. G r)0L @A)}
and:
= N"(m,8) =max,,, {4, s.t. 6pn b YL G a))
These results can be further specialized by udieg uniqueness of the solution @to

problem (M). We havers(w,a)={s"(m @} xQ(w § and the first equation of the KKT
condition systemj.e. n+A—-10p=h+Hs"(x,a), ensures that the differende—1Up is
also unique for any (A,p)0Q(ma). With n"(m,a)=a-h-Hs"(x,a) we have
1Op-A=7q"(n,a) if and only if (A,n)0Q(n,a). Note also thatn™:R"x 7 . R" is
continuous in(m,a) on R" x_2 by the continuity ofs”. Let use the upper indexm" for
indicating an element of (w,a),i.e. (A\",n")0Q (x,a) and1 O p™ -A" =" (x,a) . “Fixing”
the value ok at s"(w,a) in the KKT condition system we obtain:

" (ma)=ming, , {4, St Wy by )IQ, @A)}
and:

Ti;nm(“’a) =max,, ; o, st U, i,y XQ, @A)}
where:

Qn(ﬂf,a) E{('un’)\'(n))DRx]Rf s.t. M, _/]nk :”rr:((n’a)7 /]nksrwrll (Tlf,a): 0 and/]nk 2 ?

for kKOK

For later use let define the term,"(m,a)=max{y, (x,a):kOK}. Given that n™ is
continuous in(w,a) on R"x 2, 7" =max{y; :kOK} is also continuous in(m,a) on
RN x 7.

Two cases occur fok[?]) and /', depending on whethexr, >0 or a, =0.

17



If a >0 then there exist§ 0% such thatsy(m,a)>0. This implies that4, =0 and, as a
result, that/4, =1 (m,a). Hence the solution i/, to problem (LM) is unique i, >0. Let
denote this solution by/'(sr,a). This implies that:

r:_l'lm(n,a) =%I‘I”‘(n,a):%I'Im(n,a)zu:‘(n,a) if a,>0.
Provided thatA7 =0 if and only if ££'(w,a) =77, (w,a), we also havel, (w,a) =7."(w,a),
i.e.:

- N"(m,8) = 447 (m,8) =77 (m,2) if a,>0.

If a,=0 then s’'(w,a)=0 and, k?r‘,) and (' are not uniquely characterized by the KKT

conditions. Butg, 20 implies thatx™ = 75 (x,a) for any kO , i.e. that 44 is bounded
from below with:

min,, ; ol st iy )OQ, (@)= min{s} =max{r7,(= d: kOx} =7,{ 7 9 .
As a result we have:

e N"(m,8) = 4 (m,@) =77, (n,2) if & =0.

Provided thaty/'(,&) =77,"(m,a) is continuous in(w,a) on R" x 2 we have:
0 m — =m _,,Mm
EI'I (m,@)=7,"(m,a)= ' (n,a) foranya, =0

and it follows thatf ™(x,a) is continuously differentiable ifr,a) on R" x 7.

QED.

18



The intuition of this result is as follows. Therter]. (wr,@) allows the identification of the

(n,k) pairs for whicha, =0 is the least constraining. Basically, to make lavde an

infinitesimal acreage preceding crope, >0, implies that the optimal choice &f, remains

null for any cropk 0% such that/y(,a) <77;"(m,a) while that of s, becomes strictly

positive for any crop 0% such thaty, (w,@) =77." (m,a). With
Hy(ma) =17 (m.@) = 2-N"(m.a),

M'(m,a) is the maximum renting price that the considerather would pay for increasing

his acreage of land with preceding crowhen such land is unavailable on his farm.
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(iv) ng, (m,@) = gy xv =A%) where (Ag,, 4') is any solution in(i ,, 4,) to problem (LM) if
nOx°(a).

) U (m,a) =7 (m,a) = max§ys, (m,a):kOK} for nOK°(a).

Proof. Problem (C) is a quadratic programming problenthwnon redundant linear

constraints. Its solution is are unique and its KKT conditions uniquely chagaze the

optimal Lagrange multiplier vectorg, (n,a) for nOx°(a) on the one hand angy(x,a)

and AS

m(ma) for nOK " (a) on the other hand. This provides resylt The KKT conditions

of problem (C) are identical to those of problem )(Ms soon as we consider

Ny (70,8) = 47 X1 =gy

instead of both' and A, for nO%°(a) . This provides resultsi}-
(iv). Result ¢) is obtained by using the definition of'(w,a) in Proposition C1.

QED.

These results related to cases where some prestiopés) is(are) unavailable on the farm can

be summarized by considering problems equivalemroblem (M). Let assume tha =0
and let consider the maximization problem equiviaterproblem (M) obtained by replacing
the constraintss,, 20 and's,, =a, by the constraiyt =0 . The agitilragrange
multiplier vector associated to this equality coaistt, n,(m,a)= (7, (7,a) :KOK), is
unique and allows characterizing 4, (w,a) with ' (w,a) =77, (w,a) where
7, (m,a) = max{y,, (x,a) :kOK}. This result has two main implications. Firstiniplies that
Hy'(m,a) is easily computed by enforcing the constraipt=0 r fdlXx such thata, =0

in problem (M). However, if this approach is conmam for solving myopic problems, it is

20



much less relevant for characterizing the solutitmsdynamic acreage choice problems.

Second, this result is insightful for analyzing theechanisms lying at the root of the
characterization ofi,'(w,a) . The equality, (w,a) =7,(w,a) states thattagginal effect
of an increase i, from O ofl™(m,a) i.e. 4 (wa), is equal to the optimal Lagrange
multiplier associated to the least constrained €wpen the constraints, =0  are imposed
for KOK, i.e. 77,(ma). Let assume that the farmer obtains a very smealbage with
preceding crom. His optimal choice consists in devoting this ageto the crop sequence(s)
(n,¢) for /0K such thaty,, (w,a)=7,(n,a) 7,(x,a) is positive if it is profitabfer the
farmer to grow crop(sy after crap 77,(m,a) is negative if the farmer would be forced to

grow crop(s)/ after crop, i.e. if the farmer would not rent any acreage withcpaing crop

n.
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Appendix D. Dynamic problem

This Appendix provides results related to the cti@razation of the dynamic problem (D).
Proposition 2 in the main text is defined as Pragmos D1 in this Appendix. It characterizes
the solutions to the dynamic programming problemsadered in the article by adopting a
stochastic programming approacte. by directly solving the dynamic problem as a éarg
static problem while taking advantage of its mtdige structure.

Proposition D2 provides additional results by adapt dynamic programming approach,
i.e. by relying on Bellman’s dynamic programming pipie. Proposition D3 provides
detailed results on the differentiability propestief the value functions of the considered

dynamic problem.

Proposition D1. Dynamic problem, stochastic programming approach

Let define the vector of contingent acreage choi@s s=(s, :t=1,...T) with

0
Sy = (Supy - Uw}) for t=1,...,T and let define the support point vector of thepcgooss

margin vector ast = (w,, :t =1,....T ) with @, =(m, ‘g OW;) for t=1,...T.

tley

Let consider problem (fy:  max, Z:zlﬂ“lza{mw p,N6, 7, ) where the feasible set

F(a,) is defined as:

F(a,) ={sOR}": Ds, =a,andDs, =As, forq 0w, @), &, 0W,_,,t=2,.T |

@

under the assumptions stated in Propositions B1C4And

(i) The solution irs to problem (B9) is unique. Lets’(w,a,) denote this solution with

S'(m,a,) = (5 (@ a,) t=1,....T j and s, (7, 8,) = (s;, (®,8,) : . OW).
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(vii) ch’l is continuously differentiable ia, on R™ x 4. |.e, there exists a function

ne, RWx g o M, (T,3,), continuous ira, on R™ x 1, with %VQ‘; (m,a,) =, (m,3,) .

Proof. Provided thatll is quadratic and strictly convex in eas), that 5>0 and that

p, >0, the objective function of problem {p Z;,BHZ (s, :7,,), is strictly

@Ow, pﬁ{ tle

convex ins. It is easily shown that the feasible ggt,) is a polyhedron oR}" with a non-
empty interior. These conditions imply that probl¢bf) is a (possibly very large) strictly

convex quadratic programming problem with strorfglgsible linear constraints. This in turn

implies that results)-(iii) can be obtained by applying the results of Beragetral (2002).

Results iv)-(vi) are obtained by using a Lagrangian approach witspecific Lagrangian

function. The device used here consists in diséognby '™, as well as in weighting, by
p,. the Lagrange multiplier vectors, and p,. Indeed, this device simply consists in

defining the Lagrangian problem associated to mb(D¥) according to its multistage
structure, as in the dynamic programming approadtie. considered Lagrangian problem is
defined as:

min, min,,, maxL 6. p 7 a, |
where:

(S iT.80) =M 5, Ty, ) Sk, + L, @ DS,,)
T pta — y
+zr:2ﬁ z@-lDW-lza%DWm,l p"* r{ q“l nt""f -)-S“%;\'&% }

T t—1 ]
+ zt=2'g z%m_l P, z@%ﬂ Puyi My (AS, , ~Ds,)
and where the non-negativity constraint Lagrangdiptier vector AOR"" has the structure

ofsi.e h=(h, t=1..T)with L, =0, 1@ 0W).

®
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The feasible set having a non-empty interior, probl(Df) is strongly dual and the

solutions to the Lagrangian problem provide thasthé original oneg.g. we have:
V, (@,8,) =min, min,_, maxL 6L p 7 &, .
Rearranging the terms ib(s,A,p;7,a,) Yyields:
L(S1)\’lu'ﬁ’a0) = Z;r:lﬂt_lza{ww‘ pcq {I_I(S(q' T_ttkq - D'uq +ﬁA'ﬁt+1kq) +S’¢q)\’¢q} +u'wla0

whereR,, =2 PataMa,, andiry, =0.

‘qﬂDM/Hlm

The optimization problenmin,,, max L 6 . p & A, ) can then be decomposed as :

T — . = ] —
Zt:lﬂt thqDWt pa{ mquzo ma)ga{ {rl (Stq ;ntm -D ll@ +ﬁA ut+1|f4 )+S’a{)“a{}'
Proposition B1 then allows showing result)(i.e. problem (D) is equivalent to the dual

problem:
(DD°) V5 (®,a;) = min, U (17 3,)
where :
U(i7,80) = 2 A7 oy Pl @y = D'l + BA )+ 1,20,
Problem (D) being behaved, the solution setirto problem (D), i.e. :
M, (7,8,) = min, U (;7,a,)
exists and the solution Bto problem () can be obtained with:
s, (@a) =S (@, —D'p,, + BAN,.y,) for @ Ow, and
for any pO M, (7,3,) .
The characterization aiz;, (%,8,) in result ¢) follows from:
%U (w;7,8,) =@, —Ds* (@, ~D'n,, + BA'R,,)

and:
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= = z HMa p"%—l p‘*ﬂ‘%—lAss(ﬁt—llﬂ{—l _D’u‘*{—1+ﬁA'ETM-1)
aiqU(u:ft,aoFﬁt1{ e :

_pa{ Dss(ﬁtm - D’ua{ +ﬂA’l_lt+1|(4)
for g Ow, andt =2,....,T . The specific structure of theg and#/, terms imply thatd) there

is a unique elementy_, of #,, such thatUw,, and p) for this element we have

P, Payia, = Py - This implies that:

OLU (H,T_E,ao) = ﬁt—l p(q A (T_I:t_lm—l a D'u(‘%—l +ﬂA’l_lt|f‘-{—1)
e -Ds® (T_rtm - D'llq & ﬂA'ﬁHlm)

where ¢, is the a unique element o), such that U, . If pOargmin U @7 a, )
then the first order conditions of the consideredimization problem provide:

Ds’(m,, —D'n,, + BA'R,,) =2,
and:

DS’ (%, ~ D,y + AT uy,) = AS (s, ~ DR, +BATR,, ).

for W, , w_ 0w, , andt=2,...,T . This yields result\).

legy ?
The continuous differentiability o‘f/(f; in T can be demonstrated following the approach

employed for proving problem continuous differebtii@dy of value function (M). From a

technical viewpoint, problem ({pcan be interpreted as a (very) large myopic gwb\When

applied to derivatives o’ﬁ/&j Theorem 58 of Berkelaat al (1997) indicates tha\/&j is
differentiable in7 if the solution ins to the problem defining/a‘; is unique. The continuous
differentiability of Vaj follows the uniqueness &f (x,a,) . Provided that

2V (®,a,) = (7,a,)
and thats’(w,a,) is continuous irm on R™ x 1, Va‘i is continuously differentiable i on

R™x 7.
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The next proposition establishes the propertiethefvalue functions of problem {Pwhich

are defined according to Bellman’s dynamic prograngnprinciple.




(a) piecewise quadratic and continuougj, ,a_,) on R™ x 1, convex in and

concave ina,, on R™ x 1,

e

1 ON R x 2 with

(b) continuously differentiable i

+

Vi (R 80,) =5, ([, .8, ,),
(c) continuously differentiable im, , on R™ x 1. I.e. there exists a function
g, :R™ x4 - R, continuous in(@,a,_,) on R™ x 1, such that
5}

mvf:: (E:m e "Z (R:m Q).

Proof. The recursive definition of the value functions result {) is an application of
Bellman’s dynamic programming principle. In the swmiered case this principle allows

decomposing the large strictly quadratic prograngrproblem (B) into smaller ones. This

provides resultif. This also implies that the value functions fuoics Va‘; for oy Ow, and

t=1,....,T have the properties of the value functmub stated in Proposition D3.

QED.

+

0 &-1) for @ 0w, andt=1,....T are identical

The properties of the value functiod§ in (7

to those of\/aj in (m,a,) because these value functions are the solutioctiomto “small”
versions of problem (f).

0 [—

S, (m

:la{,at_l) is the optimal contingent acreage choice in s@nago «, with previous

crop acreage,_,. This acreage choice is equal to the optimal @&ehoice in sub-scenario

w, of problem (B) if and only if a,_, =As,, (m,a,) whereq,, is the sub-scenario from date
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1 to datet -1 corresponding to sub-scenaig. |.e. s;(ﬁtjq a,) =S, (ma,) if and onlya, ,
is equal to the optimal previous acreage choic@roblem ([9) in the only sub-scenario
happening at date—1 satisfyinga O, (aw_,) .

This shows that problem {Disnt easy to solve neither by following a stostia
programming approach (Proposition D1), nor by felloy a dynamic programming approach

(Proposition D2).

The next proposition establishes some resultsectled the derivatives of the value function

V., and thus to the value functiok§ for ¢y O, andt=1,...T.
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(b) if a,,=0 then/ , (m,a) = min,, {4, st @21)OD, @a,)}and:

My, (@ a,) =

0 0 (=
= V, @a),

(©) K., (ma,) is continuous in(m,a,) on R™ x 1
and:

(A) £, (1.8 =, V2 (@.2,).

Proof. The differentiability properties of the value @lions Vaj in a, are demonstrated by

considering of the Lagrangian problem associategrablem () used in the proof of
Proposition D1j.e.
(LDY) min, min,,, maxL 6 p 7 @, |
where:
L(shm7,8,) =M1 (S, iy, ) +S, My, + 10, (B0~ Ds,,)
4B i, P Sy By ¥y )
+ Zthz 14 t_lzq,lm,l Py, quwm_l Pt (AS,, ~Ds,)-

We know that the solution ia to problem (LD) , s(m,a,), is unique. Let define the set of
solutions in(,p) to problem (LD) by @, (m,a,) OR™ xRY. Q2 (m,a,) is characterized
by the KKT conditions of problem (LT

n,, —h, +&, —D'p, + ARy, —HS, (1,a,)=0 for @Ow, and = 1,.T
sy (m@ag)h, =0,s, @a,)20,4, 20 forqUw, and= 1,.T,
Ds, (m.3,)—a,=0
Ds,, (7,8,) —As;, (m,8,)=0 for @ O (@_,),w_,0%,_, andt=2,.T .

where Ty, EZ%D it PaataPa, @nd Bry, =0 becausep, =0. By these KKT

conditions we know that the terms
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n, (7.8,) =D'p,, — L, — BAR,,,, for @Ow, andt=1,...T-1
and
n;, (m.8,)=D'p,, —4,, for w O,

are uniquely defined. It suffices to observe thit(x,a,) ==, ~h—Hs;, (7,a,) and that the

tly
terms s; (m,a,) are uniquely defined forw O, and t=1,...T . Moreover, s; being
continuous in(w,a,) on R"x 1, n; :R™ x_2 - R" is continuous in(w,a,) on R" x 1
for w Ow, andt=1,....T.
When applied td/(f; for derivatives ina, , Theorem 50 of Berkela&t al (1997) yields:
W’iov&j (m.a,) =min, , {#,,, St @A)0D; @®a,)}
and:

%Va: (,8) = max, ;, {t, St @ 2D, & A, )}

We want to show that there existK-alimensional functiom; ‘R™ x 4 -~ R* such that:
(@) if a,,>0 then(u,2)0D; (7.a,) implies 4, , = i, (m,3;) and:
Ho o (R.30) = 1 4y =55 Vig (R,80) = 5V (7,80) = 52V, (7 .2,),
(b) if a,,=0 then /4, (®,a,) =min,; {4, , St @1)ID, @a,)} and:
Hh oy (7,30) = 5V (R.3,),
© 4, (m,a,) is continuous in(m,a,) on R™ x 1
and:

(d) 12, (7:30) = 52 VS (@.).
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Note that conditionsaj-(c) imply condition ) and that conditiond) implies thatV(fi’ is

continuously differentiable i@, on R™ x 1.

We proceed by backward induction and by using tK& Kondition equation system and, in
particular:
D'y =2 =My, (W,80) foreg Uws

D'n, =k, = BAR Ly, =0, (@a,) forqOu, and = 1,.T -
Sy (mMag)h, =0andh, 20 forgOw; antd= 1,T,

with s, (,8,) 20 or, equivalently:

tun,a)r _/]nk,wr :/7r(1)k,a)r (ﬁ!ao) fora%’ |:H/VT
/'ln,(q _/]nk,(q _ﬂﬁk.ﬁlm :”r?k/q(ﬁ!ao) fora{ |:]r{/l/t andt = l’-l’- -
Sk (Mag) Ay, =0andi, , 2 OforyUOw, and= 1T,

for (n,k)OK XK.

Let define the sets:

lun,wr X1= }\’(n),wr = Tlg)r (E’ao)
Moy Sy (M86) =0, Aoy ) 20

Quay (,80) = {(:un,wr ey JORS™

and :
My o (,80) ={ 4, OR: (., 4,,) 0Q,, (T 8,)}

for nOK andcw. D%, , and:

Fhg XV oy ™ Bl =M, (Ta0)
Qr?’a{ (m,a,) = (,un’a{ ,k(nm)DRKﬂ: )"'(n)ms?n)/q (m,a,)= O,l(nm >0 ,
l_lt+l|a4 Dmr?,ﬁlm (Tt!ao)

My, (T30) ={ 44, , OR: (, 2,,) 0Q,, (T a0)}

and:
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ﬂn = Zaﬁlmﬂ(@) pa{*lla{ ﬂn Wiy

ﬂ_/lrcw’,tﬂkq (R'ao) = /’ln DR : o _
:Lln,zqa,1 D '(]‘/ln,zq+l (TC, aO) for a%+1 Dq/l/ﬁl(a‘z )

for nOUK, @ 0%, andt =1,....T - 1.

We want to show by backward recursion that for amy,.... T - 1, w_, O%W,_,, w OW,(w_,)

andnOK the function, , :R™ x 4 - R defined by:

oy (,80) = Maxyy, , (@.8,) + BIE .y @.80) KUK}
satisfies:
(at) M2, (7.8,) ={1L, (T ay} if Vs, (Fa,)>0 (or a,,>0 if t=1),
(b.b) 4, (m30) = min{, , Oy, (7))} if v's), (m,8,) =0 (or &,,=0 if t =1),
(ct) A, is continuous in(®,a,) on R™' x 1 for anynO% .
Note that conditionsa(t) and b.t) imply that /£, , (,8,) = min{x, , OM, , (m,a,)} for any

w 0w, andnlUK .

First, let assume that the functigs,,, ‘R™ x4 - R satisfies:
(@t+1) o, (Wa,) ={th, (mag} if Vs, (ma,)>0,
(b.t+1) 4, @ag)=min{y, , O, (7 a)} if Vs, (7,a,) =0,
(c.t+1) A, is continuous in@,a,) on R™ x 2 for anyn0%
forany g O, w,, OW,,,(w) andnUK .
We aim at showing thaur?’q satisfies conditionsa(t)-(c.t) if conditions . t +1)-(c. t +1)

hold fors, . for ., 0w, () andnO% .
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Let define the functiongz’,, :R™ x4 - R:

A '2“11‘4 (m.a,) = Zammwm(w) Pey, Wu'? Wi (m.a,)
for g Ow, andkO% . From the continuity of4 ,, in (m,8,) on R™ x 2 we know that
By oy -R™ x4 - R is also continuous i@, a,) on R™ x 1. This implies, together with
the continuity ofn;, in (7,a,) on R™ x 4, that conditiont) necessarily holds.
With 24, (m,8,) =min{y, , O, (ma)} and p, , >0 for @, 0, () we
have IIQHM (m,80) = MIN{Z4, 1. 4, Elﬁl_/lft+m(ﬁ,a3}. Note also that, for anyn, @) 0K x%/,

there exist(44, 4 &) DQn,, (M,8,) with A, , =0 for somek % . Two cases may occur,

(M@
depending on whether's, , (m,8,)>0 or s, (m,a,)=0. If Vs, , (m,a,) >0 then there
necessarily existk 0K such thats; , (,8,)>0 and we necessarily hava, , =0 if
(Hoig s My ) Qi M,80) . I V'sy, (m8)=0 and (4, ,)0Q0, (@,3,) then we
necessarily have A, , =0 for kOargmaxfy, , @®a, )+ B0, .y, 0K} for any
By iy DMy, (,2) @ long as:

Hg SN0, ot St (g Ay JIQS, @ 20,

With:

’Llnva% = nr?k,ag (R'aO) 7 /]nk @ + lg[lk 1+ 1 for k DK
(/un,cq ’)\’(n),a{)DQr?,cq (E’ao) < ’Zlkvt*‘lh{ Dﬂ_/lft*']zlq (ﬁ,a()
S @A) Ay, =0andd, , = 0 fok O

the results obtained above imply that:
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minﬂm {/un,(q O m:,wl(ﬁ’ ao)}

Ming, o tha (g Moa) BQaq (T80}

”r?k,a{ (E:ao) + Ank,a{ + ﬂﬂk,ﬁlm
mMDK mir}/‘nk,a{ vpk,t+1m) S't.
/L_Ik,t+1|a4 Dml?,ﬁlm (ﬁ1a0)1 Ank cqsr?k Q (ﬁ A 0): O, Ank,a{ 20
and, as a result that :

min,, (., DM, (7 39)

Mo @80) + Ay + Bl sy, (@20

Max, ., minAm S.t.
Ank,zq Sr?k,cq (1_t,a0) = 0' /]nk,(q = 0

MaX{75 o, (7,80) + B .1y, (7,2) (KOKD.

Provided thays, , (,a,) = max{7,, ., (®@.a0) + By, @.a,) :kOK}, this provides condition
(b.t +1).

If Vs, (ma,)>0 (or &,>0 if t=1), then there necessarily exiskd1X such that
Swq (M3)>0 and A, , =0 if (4, rue,)0Q0, (@a,). This in turn implies that
', (ma)>0 and, by condition gt+1), that M, (m.a,)={4, (ma)}for any
@.,0M.,(«) and, thus thadty ,,, (,8,) ={,. ,(T @)} . Finally, we obtain that:

lun,a{ :”r?k,a{ (1_t,a0) + /gﬂl?,ulkq (1_t,a0) for any (lun,a{ ’)“(n),a{ ) DQ:,ag (Tt’ao)-

As a result, we obtain that the optimal valye is uniquely defined,i.e. that

My, (@.a,) ={15,,(ma)} or that conditiongt) holds.
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Second, for completing the proof we need to shat tlnditions 4.t)-(c.t) hold for,u,ﬁ"q for
t=T, w_ 0% _,, wOW(w_) and nNnUK. Of course in this case we have
vy (:80) = iy = Moy, = 0.

The conditions defininng; (m,a,) correspond to the first order condition (mwr ’"wr) of

a myopic problemi.e. to that of:

max, {n(s, @, ) stDs, =As;, @A, )= 0andg, >0
for w 0%, (w_) and w,_,0%,_,. Hence, from Proposition C1 we know that for any
w_, 0w, anda, O, (w,_,) the functionz;,, :R™ x4 ~ R defined by:

ﬂ:l’,&)r (T_t1a0) = max{/]r?k,wr (T_E’ao) kDK}

satisfies:
@T) My, (Ta)={ (T ay} if Vs, (ma,)>0,
(b.1) 4., (ma,) =min{pOM; , (may} if Vs, (7,8,)=0,
(cT) 4, is continuous inm,a,) on R™ x 2 for anyn0% .
Note that, , (m,,) is not necessarily equal g/, , (&), +) if v's) , (m,8,)=0 asin
Proposition C1 becauaé!sﬁ,%_1 (m,a,) =0 cannot hold ifs, ., is sufficiently large. Indeed,
(g Ay )0Qg (®a,) and 4, , Oy, (7,8,) for any cg O (ag_,) imply:
Hras ™Mo ®30) 2 Bz, = 2y Pt oy, fO7 LOK
while, as will be shown belowy, , ~may be bounded from aboved, MZ@_l(f_r,ao) is a

singleton ifv's} , (m,a,) >0).

QED.
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Appendix E. Some useful results

This Appendix collects definitions and results tetato nonlinear programming which are
use in Appendices B-D.

The results collected in section E1 consider seitgitanalysis for general nonlinear
programming problems. The results given in sectiB2 are related to quadratic
multiparametric quadratic programming. They aremyadlue to Bemporaét al (2002) and

Berkelaaret al (1997).

E.1. Nonlinear programming sensitivity analysis
This section considers general nonlinear progrargrpimblems and sensitivity analysis of
their solution functions. The results and defimajiven in this section reproduce (with slight
formal modifications) those collected in Fiacco aRgparisis (1985). The Theorems are
numbered as in Fiacco and Kyparisis (1985) and titeyreferences provided in this article.
Most of these results are well known. They consilercharacterization of the solutions to
nonlinear programming problems or sensitivity asalyfor these solution®.§. results are
known implicit function or envelope properties).
The results published in Jittorntrum (1984) ars lesquently considered. These results are

referred to as Jittorntrum (1978, 1981) in Fiaced Kyparisis (1985).

E1.1. Necessary and sufficient conditions for local minima

Let consider the nonlinear programming problem

P) min, {f (x) s.t.g, k)= O fori = 1,.m and, x(5 O fpr= ,.1,p}
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assuming that the functions g and h are twice continuous differentiable x in a

neighborhood o&°. The Lagrangian problem associated to problenis(Biven by

L(x,uw)=fx)->. " ug, (><)+ZIF’:1Wj h ()= f (x)-u'g(x)+w'h(x).

Definition. Karush-Kuhn-Tucker (KTT) conditions. The KKT conditions holds ak® for
problem (P) if there exists Lagrange multipliersand w® such that:

2L(x°,u’,w°)=0
u’g(x°’)=0,uw’=0andy X° p Ofor= 1,.m
h,(x°)=0forj=1,..p

Theorem 2.1. Necessary first order conditions for a local minimum. Karush (1939) and Kuhn
and Tucker (1951).

Suppose thatx® is a local minimum of problem (P) and an apprdpri@onstraint
qualifications hold ai°.

Then, the (KKT) conditions hold at° for problem (P). Conditions (LI) are appropriate
constraint qualification conditions.

Definition. Binding inequality constraint set. 3(x°) ={i =1,...,m: g’ (x°) =0}

Definition. Linear Independence conditions (LI). Conditions (LI) hold ax® for problem (P) if
the vectors.;iX g (x°) for i O3(x°) and%hj (x°) for j=1,...,p are linearly independent.

If (LI) holds at x° thenx® is said to be a regular point of problem (P).
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Definition. Second order necessary conditions (SON). The second order necessary conditions
hold for problem (P) ak® with u® andw’if
1 9? 0 ;40 \p,0
Z - L(X°,u®,w®)z=0
for all z such that:

2.0,(x°)z=0 if i DB(X°)
2 g(x°)z=0ifi=1..m and O3 X°
S h(x°)z=0forj=1,..p

Theorem 2.2. Second order necessary conditions (SON), Fiacco and McCormick (1969) and
McCormick (1976).

Suppose thak® is a local minimum of problem (P) and that coradis (LI) for problem (P)
hold atx°.

Then the conditions (KKT) and (SON) for problem (®)ld at x° with associated unique

Lagrange multiplier vectora® andw®.

Definition. Second order sufficient conditions for a strict local minimum (SOS). The second
order sufficient conditions for a strict local mimim hold for problem (P) at® with u® and
we if:

z'%;x, L(x°,u’,w°)z>0

for all z# 0 such that:

2-0,(x°)z=0 fori =1,...m such thatJs x{
2 g(x°)z=0fori =1,..m such that’ > (
S h(x)z=0forj=1,..p

Theorem 2.3. Pennisi (1953) and Fiacco and McCormick (1968).
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Suppose conditions (KKT) hold af with some Lagrange multiplier vectou§ and w® and

that conditions (SOS) also hold.

Then x° is a strict local minimum of problem (P).

E1.2. Sensitivity analysisand implicit function properties
Let consider the perturbed nonlinear programmirggplem :
P(e) min {f(x¢)stg ke)=0fori=1.m ant x(¢,5 0fg=1..p}

0 0
|Wf|&

where ¢ is a perturbation parameter assuming that thetifumgef, g, h g and aixh
are continuous differentiable ifx,€) in a neighborhood ofx°,£°). The Lagrangian function
associated with problem with probleRtg) is given by

L(x,u,w,g)=f (x,e)-u'g(x,e)+wh(x,e).

All results and definitions of Section 1 apply t@plem P(°).

Definition. Strict complementary slackness conditions (SCS). The strict complementary

slackness conditions hold for probleP®) at x° with respect ta® if:

u’ >0 for i =1,...,m such thatg, (x°,£°) = 0.

Theorem 3.1. Fiacco (1976).

Suppose that conditions (KKT), (SOS) and (LI) oblgem P(°) hold atx® with associate

Lagrange multiplier vectora® andw® and that the conditions (SCS) also hold.

Then,
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() x° is an isolated local minimum d?(c°) and the Lagrange multiplier vectors and
w° are unique;

(b) for ¢ in a neighborhood ofe°®, there exists a continuously differentiable vedtorction
y(e) =(x(g),u(e),w(e)) satisfying conditions (KKT) and (SOS) of probleR(g) such
that y(¢°) = (x°,u®,w°), and, hencex(g) is a locally unique local minimum for problem
P(°) with associated Lagrange multiplier vectoi®) andw(g);

(c) the (LI) and (SCS) conditions hold &e) for ¢ in a neighborhood of°.

The derivatives ofy(g) in ¢ in a neighborhood of €° can be calculated by using the
conditions (KKT) of problemP(g) at y(g) :

2 L[x(g), u(e),w(e),g] =0
u (€)g,[x(e),e] =0 fori=1,...m
h,[x(¢),¢] =0 forj =1,....p

where:
> L[x(2), u(e), w(e).e] = o f(x,u,w,8)=> " u (€)= g, (x,s)+zjf’:1wj €)= h (X.€)
The assumptions of Theorem 3.1. imply that the BiacoM (g) , with respect toy = (x,u,w)

of this system of KKT conditions is nonsingular. &sesult:
M(e) 5 y(e) =—Q(e) and ;y(e) =-M(e) " Q(e)

where Q(g) is the Jacobian with respectdoof this system of KKT conditions.

At £ =¢° we have:
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s X(€°)
M (%) 5y (e°) =M (£°)| 2 u(e®) |=-Q(&°)

7] o
S W(E°)
where :
sorl %% 3 On wh o gh o L
Uzd 9 0 O 0 0 0 U5 O
: o . O O 0 O :
M=lu,%9, 0 0 g, 0 0 0 |andQ=lu, 5g,
%I‘g 0O O 0 O 0 O %I‘g
: 0O O 0 O 0 O :
a a
i L 0O O 0 O 0 O | i 5o |
ie.:
[ 92 P 9, o a2 7
oxox 0’ Z-lax gl og ul Z j=10x hJ 65 %L
a
lﬁwglwx gl@ 1 U 5 %
a . .
WX : :
0 —_ 7] — -0 = —
Mo y=M ?u = Unn 3 Im 3 X+ O 5 U =Q= umaaTgm
W X aw
: a.
L d hpai N L Whp N
and :

a0’ 0’ m a2 Z p a9’
— L= 1T . O + - —— N
0xox’ L oxox’ f Zi:lul Oxox'" gl j=1WJ Oxox’ hJ

are evaluated gix°,u’,w°,£°%).
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Definition. Srong Second order sufficient conditions for a strict local minimum (SSOS). The
strong second order sufficient conditions for &stocal minimum hold for problenf(e®) at
x°® with u® andw?® if:

2
Z o L(x°,u’,w°)z>0

for all z# 0 such that:

2.0,(x°)z=0fori =1,...m such that® >
~-h(x)z=0forj=1,.p

These conditions allow obtaining sensitivity anayesults without condition (SCS). Note

that conditions (SOS) and (SSOS) differ by the doork they place oa. The condition:

2 g(x°)z=0 fori =1,...m such thatl3 x¢

in conditions (SOS) is omitted in conditions (SSAXY Z' il L(x°,u®,w°)z >0 must hold

Oxox’

for set ofz larger in conditions (SSOS) than in conditions §0

Theorem 4.1. Jittortrum (1978, 1981) and Robinson (1980).

Suppose that conditions (KKT), (LI) and (SSOf®)y problem P(°) hold at x° with

associated Lagrange multiplier vectar’sand w’.

Then,

(@) x° is an isolated local minimum of problem(E®) and the Lagrange multiplier vectors

u® andw®’ are unique;
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(b) for ¢ in a neighborhood of £°, there exists a continuous vector function
y(e) =(x(g),u(e),w(e)) satisfying conditions (KKT) and (SSOS) for proble®(e) such
that y(¢°) = (x°,u®,w°), and, hencex(e) is a locally unique local minimum of problem
P(g) with associated unique Lagrange multiplier vectofg andw(s);

(c) conditions (LI) hold atx(g) for ¢ in a neighborhood ok’ ;

(d) there existt>0 and d>0 such that for allz with |e~°|<d, it follows that

ly(e) -y )

<tH£—£°

The results collected in Theorem 4.1 (and in Theoi®3) were published in Jittorntrum
(1984). Basically, Jittorntrum (1984) shows that tonstraint qualification condition (SCS)
condition is not necessary for obtaining impliciin€tion (Theorem 4.1) and envelope
(Theorem 7.3) properties as long as the considem@alem has a unique solutionssnd the

constraint qualification condition (LI) holds atettoptimum. Condition (LI) ensures that the
solution to the dual problem in the Lagrange miiéig of the considered constraints is

unique.

E1.3. Differentiability of the optimal value function and envelope properties

Definition. Local optimal value function. A local optimal value function of probler(g) is

defined asf,’(g) = f[x°(g), €] wherex°(g) is an isolated local minimum of probleR(g) .

Theorem 7.2. Armacost and Fiacco (1978) and Fiacco (1980).

Suppose that the conditions (KKT), (SOSC), (LI) 48€S) hold a® for problemP(&°).
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Jittorntrum (1984) also shows that the local optir@ue function f,° is twice directionally

differentiable under the conditions of Theorem 7.3.

E.2. Sensitivity analysisresultsfor (multi-)parametric quadratic programming problems
This section collects results related to the stedaparametric quadratic programming

problems. The literature on parametric programnprnaplems seeks to “fully” characterize
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the solutions to parameterized programming problasninctions of their parameters. While
sensitivity analysis theory addresses the sametignaa a neighborhood of some parameter
values, parametric programming theory seeks tooegpthe whole parameter space. Of
course, this requires considering specific probleoth as quadratic programming problems.

The seminal work Bemporat al (2002) lies at the root of a series of articlegparametric
quadratic programming in the automatic controlrétare. It provides elements for the
characterization of the solutions to quadratic pragming problems on their whole parameter
space. It also shows how this characterizationbsansed for designing efficient algorithms
for finite and infinite horizon linear quadratic topal control problems subject to state and
input constraints. This section collects some ef isults published in this literature which
can be used for solving dynamic programming proklem

It also presents sensitivity analysis results dudeérkelaaret al (1997) on specific on
parametric quadratic programming problems. Theskoasi address different questions, but

their results can be used for complementing thasaireed in the automatic control literature.

E.2.1. Parametric (strictly convex) quadratic problems
Let consider the following quadratic programminglgem:
QP®©): min,g, ,{X(h+F0) +1/2xx'Hx+1/2x0"¥0}

where the feasible s&t(0) of problem QP§) is the following polyhedron:

F(0) ={xOR": ax=h, +s0for cO& andax<b,+s0 forcy}with 00O
The parameter spac® 0 R” is defined as a polyhedron. Let assume thaty =0 and let
Cc=€07={,...,C} denote the whole set of (non redundant) constgalimt further assume
that A=, :cOC]OR™, b=[h :cOC]OR® andS= E, cO¢ JOR®?, and that the

parameter set is full dimensional.
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Assuming tha# is positive semi-definite and tha&t(0) is not empty, the solution ir[IF(0)
to the KKT conditions:

h+FO+Hx+A.=0, A0OR®
A x(@x-b,-s0)=0, cy
ax—-b,-s0=0, cOE
ax—b -s06<0, cOy
A, 20, cy

characterizex” () . If H is positive definite then problem Q@(is strictly convex irx and,
as a result,x” () reduces to the singleton formed by the unique ®olub x, x (0), to

problem QPQ),i.e. x"(0) ={x(0)} .

The inactive set is defined as:
N(x,0)=C\ 4(x,0).
The solution set of problem Q@) is defined as:
X (8) =arg ming, o, & (h+FO)+1/2xxHx + 1/ 2x0"¥0 }
and the corresponding optimal active $e{0) is the set of constraints which are active for
all xOx"(0):

A (0) ={cO._a(x 0) foranyxOx" @)}.

For a given active set, the matricesA ,, b, andS, are formed by selecting the rows of the
matricesA, b andS belonging to4. The Linear Independence Constraint Qualification
(LICQ) holds for the active setif and only if A, has full row rank.
Let xJF(0), the set of active constraints or active setiatdefined as:
A(X,0)={cOC:ax=b,+s6} .

The inactive set is defined as:
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N(x,0)=C\ A(x,0).
The solution set of problem Q@) is defined as:
X' (8) =argming,, & (h+F8)+1/2xxHx+ 1/ 26"¥0 }
and the corresponding optimal active $e(8) is the set of constraints which are active for
all xO.x"(8):

A (0) ={cO_a(x 6) foranyxO x" ©)}.

48



Proof. See Bemporaed al (2002) and Tonded al (2003).

To choose an active setallows selecting a linear sub-system of equalitystraints from the

KKT conditions for calculating the optimal valuels(,2). If 4 is an optimal active set for

HoA @ [],[F],
A, 0@ (b [S.]

This equation system can be solved by the stamddldpace method.

0O then we have:




(b) the active sef is the unique optimal active set in the interiothe critical region defined
by:
CR,={000:G,0<g}

where:

A K*-S b, —A_x*
GE[ Ma /‘ﬂ Wﬂ] and gﬂE[ Ma W ﬂ}.

(Kﬂ)]nﬁ (Kfq)]nﬂ

Proof. See Tondedt al (2003). Note that these authors do not assumeHtimpositive

definite but rather assume thatHZ , >0.

This proposition has two main implications. Fitstknow the optimal active set associated to

any@0O,i.e. 41°(0), allows easily computing the solutions to probl@m(0). It suffices to

*

use the formulas forx . (8) and xﬂ*(e)

o) (0). Second, there exists a unique polyhedral
partition of the feasible parameter sp&esuch that the interior of each polyhedral subset of
© contains the parameteds for which a given active set is the unique optimetive set.

This polyhedral partition of® offers a full characterization of the optimal aetisets
associated to the solutions to problem @POnce this polyhedral partition & is known,
to obtain the solutions problem QP( just requires &) simple evaluations aimed at
identifying the unique optimal active set 6f and then If) to apply the corresponding
formulas to obtainx’(8) and A" (), and thusVv' (@) . Bemporad et al (2002), Tondetl al
(2003) or Guptat al (2011) propose algorithms aimed at characteritiegelevant partition

of ©.
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The matrices Z, and Y, can be chosen such th@ Y ,)™ is easily obtained. This can
be done by choosing a QR characterizatiol\gf i.e..
! R 1 —_
AP=[Qu Qua]f o |FQuR with [Y, Z,]=[Qu, Q..],

whereP is a permutation matrix (and whe@, , and0 may be “empty”).

If the (LICQ) condition doesn’t hold for somg’ () then the solution irk to the KKT

conditions is not uniqgue and several optimal comtidms of active constraints exist. This
difficulty can be overcome either by suitably renmgv redundant constraints or use

projections in thg®, 1) -space. In this last solution option, the 5&t®) can be characterized

as a polyhedron in th¢d, 1) -space.




(K™ 0a0+ (K500 +(Z5),,0 20.

JnA

(b) The active se#1 is optimal in the interior of the projection of

{Awﬁx; )-b, -S,0<0

(K,Cq'/‘)]nﬁﬂ-'-(K,Cq'A)]nﬂ +(qu)]nﬁu20

onto the0 -space.

Proof. See Tondedt al (2003).

E.2.2. Senditivity analysis results for a class of parametric quadratic problems
Berkelaaret al (1997) consider (among other problems) the follmyvparametric quadratic
programming problem:

P

0.9) - minxmw){x’(h +0x%9,) +1/2xx'Hx}

where:
F(3)={xOR": Ax =b+9x35, andx = 0}.
and:

Ax=b+9xo, < ax=b +J4, forclC.
Their theorems 50 and 58 provide the left- and trdgrivatives in (8,8) of the value
function of problemR, ,, :

W?(8,5) = min., , {X(h+8x%8,) +1/ 2xxX'Hx}
assuming that the feasible sét{f) has a non-empty interior and thht is positive

semidefinite.

The next proposition collects the results of theta&0 and 58 in Berkelaetral (1997).
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The next proposition is a corollary to Propositieh The directional derivative results given
in this last proposition provide the left- and tigpartial derivatives ofW°(0,0) in the

elements ofh,b).

Let now consider the parametric quadratic programgnproblem:
Php: min {xh+1/2xx'Hx s.t.x=0 andAx=b ,
its value function:
V°(h,b) =min {xXh+1/2xx'Hx s.tx=0 andAx=b
and its associated Wolfe-dual problem:

Dipy: MaX,, ,,Ab-1/2xxHx s.tA=0 and-Hx+Ai+A'p=h .

set
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If the solution inz, to problemD, ,, is unique then:

2VO(h,b) = Vo (h,b)= 4 = 2V°(h,b).
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