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Estimating censored and non homothetic demand sysies: the generalized maximum

entropy approach
Abstract

The econometric estimation of zero censored densgstem faces major difficulties. The
virtual price approach pioneered by Lee and Pi@8@) in an econometric framework is
theoretically consistent but empirically feasibigyofor homothetic demand system. It may
even fail to converge depending on initial conaiioln this paper we propose to expand on
this approach by relying on the generalized maximemtropy concept instead of the
Maximum Likelihood paradigm. The former is robusttie error distribution while the latter
must stick with a normality assumption. Accordinglye econometric specification of
censored demand systems with virtual prices is meaiger even with non homothetic
preferences defined over several goods. llluseaklonte Carlo sampling results show its

relative performance.
Keywords: censored demand system, virtual prices, genedafiseimum entropy

JEL classifications: C34, C51, D12

L’estimation des systemes de demande censurée ehrimmothétique a partir du

maximum d’entropie généralisée
Résumé

L'estimation économétrique des systémes de demande des valeurs nulles pose de
nombreuses difficultés. L'approche par les prixuets proposée par Lee et Pitt (1986) dans
un cadre de maximum de vraisemblance est théorigunieoonsistante. Par contre sa mise en
ceuvre est difficile et aujourd’hui limitée a destgynes de demande homothétiques sur peu
de biens. Dans ce papier, nous proposons de retdternotion de prix virtuels mais d’utiliser
'approche économétrique du maximum d’entropie gd@lis®e plutdét que le maximum de
vraisemblance. Bien que n’offrant pas de solutioal@ique, cette approche est robuste aux
spécifications des termes d’erreur. A partir dewations de Monte Carlo, nous montrons
gu’elle permet d’estimer efficacement des systemmssurés et non homothétiques avec

plusieurs biens.
Mots-clefs : systeme de demande, troncation, maximum d’entropie

Classifications JEL : C34, C51, D12
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Estimating censored and non homothetic demand systes:

the generalized maximum entropy approach

1. Introduction

When assessing economic issues at a very detaled (like the effects of trade policy
instruments defined over thousands of goods), sneiy likely to be confronted with huge
amount of zero values (in the trade case, see Haveand Hummels, 2004). The simple
practice which consists of ruling out these paféicwalues is well known to be misleading
(Romer, 1994, Wales and Woodland, 1983). Howewveir gpecifications have always been
proved to be difficult for quantitative modellershis paper deals with the econometric
challenges associated to the estimation of zersezed demand systems.

The estimation of zero-censored demand systemss fage main difficulties. First the
estimators must take into account that the endagemariables cannot be negative and
traditional methods like the least squares (LShaximum likelihood (ML) do not allow this
censorship. Second prices associated to the zewss flare not observed unless strong
assumptions (like average price of previous yeargrice of your neighbour) are enforced.
For a long time two general approaches have be@satkto estimate such demand systems:
a) a “statistical” approach where the focus is lom tandom disturbances, b) an “economic”
approach where the focus is on the economic reasamsal prices) that justify these zero

values.

The first one is a two-step procedure of Heckmawgjee: in a first step we statistically
determine whether values are positive or not. Tihes second step we estimate the positive
values taking into account the results of the fs&p (with the inverse Mill ratios). This
approach is widely used (Yen and Lee, 2006 forimst) because this does not require to get
prices associated to the zero values. However Aetdal. (1999) point out the lack of
economic theory underlining this approach and tmtiore show with Monte Carlo
experiments that the results from the first apphcae as bad as those from using the simple
ordinary LS approach (which is known to be a biaaad inconsistent estimator in these

instances).

On the other hand the second approach (pioneereégdyyand Pitt, 1986) is fully consistent
but empirically untractable with non homothetic dem systems or even many good
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homothetic demand systems. This problem was alreaigowledged by these authors. In
fact we have not been able to find empirical papesiag this approach with a flexible and
non homothetic functional form like the non lingeanslog. Some computational works are
nevertheless under way to resolve this approaasugffir simulated ML techniques for high

dimensional integrals (Hasan et al., 2002).

More recently Golan et al. (2001) rely on the Gahsed Maximum Entropy (GME)

econometric method to estimate a censored non lhatotAlmost Ideal (Al) demand

system. The GME technique has several advantages.aobust to assumptions on errors, its
asymptotic properties are similar to those of tradal estimators while Monte Carlo

experiments show better properties in small sanspkes (van Akkeren et al., 2002) and
restrictions on parameters are easily introducesidally Golan et al. (2001) extend a former
paper of Golan et al. (1997) from a single equatma demand system. This new method is
intermediate between the two former ones in thesedhat some theoretical restrictions on
demand systems (adding up and concavity on obsemeslimption) can be imposed during
the single-stage econometric procedure. On ther ditied, the existence and role of virtual

prices as formalised by Lee and Pitt are not ackedged.

The main contribution of our paper is to offer avngay to estimate zero-censored and non
homothetic demand system by combining the advastafythe virtual price approach and the
GME technique (instead of the maintained assumpfarormality as in the ML). In order to

illustrate the relevance of our solution, we foetnpare the GME/ML estimations on a simple
simulated censored homothetic demand system. kapphat, when initial values are set
close to true values, both estimations return sinstructural parameters. When these initial
values are set randomly, then the GME outperfotmesML estimations. Then we evaluate
our econometric solution with a simulated non hdretit censored demand system. Its

econometric performance is unchanged.

Another related contribution of this paper is tesfion the properties of the GME estimator
derived by Golan and his co-authors. Our doubtieppb both single equation and demand
systems cases; in this paper we present our viethematter. Basically when deriving the
properties of their estimators these authors did #eir models were not censored. In other
words they define a Kuhn and Tucker constrainedimigation program but fail to recognize

inequalities when deriving it.

This paper is organised as follows. In the nextigecwe briefly present the non linear

translog demand system that supports our analystbe third section we explain the virtual
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price approach developed in Lee and Pitt (1986)taaccomputational difficulties associated
with the ML estimation of this system when censaedero. We turn in the fourth section to
the approach suggested by Golan et al. (1997, 2@dh)the GME techniques. Then we
detail our approach in the fifth section that conasi the advantages of previous ones and
report the results of our Monte Carlo experimenisthe sixth section. Section seven

concludes.

2. The translog demand system

Several flexible demand systems for the representaif consumer behaviour have been
proposed in the literature (the translog, the Alimiogal Demand System, the Rotterdam
differentiated system, ...). In this paper we chotbeetranslog demand system because van
Soest and Kooreman (1993) show its desirable ptiepeto deal with zero censoring. In
particular it is possible to globally impose regitlawithout destroying flexibility. Moreover
the existence of virtual prices dual to zero flavgnsured, even if the demand system is non

homothetic.

Let's start with a random indirect utility functido represent the behaviour of a consuiner
choosing among different goods indexed lyor | . This indirect utility function has the

following form:

V(P.R €)= ;ak.m(%j ¥ o.5§|2ﬁk, .In(%}ln(%j + ;ek.m(%j (1)

with usual notations for variables. Like Lee andt Hi1986), we adopt the following

normalisation rule (which ensures adding-up):
da,=-1
k
and furthermore assume that
> e =0.
k

Then from the Roy’s ldentity we obtain the corresiiog marshallian demand system

expressed in shares form:
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a, + Iz,ek, '”(gj re,
Ezan(y)

W, =

(2)

This representation of preferences is globally k&gl the matrix made of thgs parameters

is symmetric (symmetry condition of the slutsky mgtand positive definite (concavity
condition of the expenditure function). By defioiti of the translog indirect utility function
the homogeneity condition is satisfied. This reprgation remains flexible in the Diewert
sense (second order flexibility) even if we imptisat the sum over all theg@ parameters is

null:
Zzﬁ” =0 3)

This restriction leads to the so called log tragstoodel which is of particular interest in
empirical applications that use aggregate datausecd is consistent with a notion of exact
aggregation of individual demand functions (Mos¢hi999).

Marshallian prices and income elasticities of thesmand functions are given by (with the

household index removed) :

Ba —WKZJ_‘,/J’,».
ezzan(il
. >4,

- [erzadi

From the last equation, it appears that imposingdtbetic preferences requires that:

3.5 =0 (6)

oy (4)

(5)

In that case the denominator in equation (2) resiuoe-1 and the demand system is then

linear in structural parameters.
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3. The virtual price approach with maximum likelihood

So far we still have not considered zero demandiowing previous papers (like Neary and
Roberts, 1980), Lee and Pitt (1986) propose to @éhlthis zero censoring by relying on the
use of virtual prices. They show that some vectdrpositive virtual pricesr,, exactly

support these zero demands as long as the preéeh@metion (whether of the translog type or
not) is strictly quasi-concave, continuous andctjrimonotonic. Assuming that demands for
the first L goods are zero while strictly positive for the ery then these virtual prices are

solutions of the following system df equations:
0=0V(7,p..Re)/dT 1=1..L 7)

It must be clear that these virtual prices aresnople calibrated parameters solving a squared
system ofL equations and variables; they do appear in theaddnfunctions of positively

consumed goods.

For instance, let's adopt in the rest of this secta three good translog indirect utility

function. If only good one is not purchased by eoneri then we have the system:

i a1+ﬁ12.l(‘;§'j+ﬂls (;j &
In(—“]:—
R

P

(8)

a, + By In| j+ﬂzzln( pz']wzaln( p?"j
w, = ? ? ©
-1+ In(ZFT%i .Zﬁll + In( FF? }Z‘ﬁlz + In( FF);I j
ay+ By In| 7 jwszln(pz']wgsln( ]
W = R (10)
1+ |n(’élj .Iz/f,l +|n( ‘;:i J.Zﬁ,z + In( R3 J.Zﬁ,g

The virtual price of good one not purchased by tlissumer is defined by equation (8) and
then appears in both numerators and denominataeguations (9) and (10) of the two other
demands. This virtual price is by definition unatveel and must be treated as a variable to be

estimated during the econometric procedure.

One additional assumption made by Lee and Pitotopute this likelihood function is that

this virtual price is lower than an “observed” meirkrice:
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< py (11)

Then using the definition of the virtual price (atjon 8) this allows them to restrict the
domain of variation of the first error term. Thege dinally able to derive the likelihood

function to be maximised under the assumption efrtbrmality of all error terms.
a. The simplifying case of homothetic demand system

From these equations above it seems obvious teatmsg homothetic preferences will ease
the econometric estimation because the denominegdtge to —1. But even in this case this
estimation is already challenging: the randomnédsthig virtual price and its non linear

interaction with other structural parameters gyeedimplicate the expression of the likelihood
function. We first detail this case in order to whine impossibilities we are then confronted

with the non homothetic case.

Let’s stay on this regime where only good one isaamsumed. The ML estimation method
consists in computing the likelihood of each oba#gon, that is the joint density of the
endogenous variables, and then maximising the sudnmthese likelihoods over all

observations. In our case of three goods transkgathd system, the additivity constraint
allows taking the two first goods into account. Thelihood of one observation is thus

denoted I(w;,w,, /X ) X representing all the data we have for that obsermwa That

likelihood is given by:

(W, Wy, /%) = P(wy, = 0,w,, /) (12)
with
__ B Un Pu _
y =-By =B, In—--In—=-1-¢, =0 13
W, B [n R n RJ & (13)
- R Un P
b = By — 21I —-In—=+|- i 70 14
W B (nR nRJ e (14)

with the simplifying notation B, = a; + Zﬂm In(%j
, _

From the inequality restriction (11) on the virtyaice, we then havev, =0 - ¢, >-B;.
Hence that likelihood is also given by(w,,w,, /X )= P(eli <-B,,w, /xi) and can be

computed in two alternative ways, i.e. conditiomah the consumption of good 2
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I(wli,WZi/xi):P(qj s—§1i/w2i,xi)P(w2i/>q) or conditional on the restriction on the first
error term 1(w;,w, /x)=P(w, /e, <-B;,x)P(e, <-B,/x). These two procedures

reported in annex 1 give the same expression dikéiéhood function:

=) Yo ViS4 f( Yoi 'O,l}
B, + - RN
(W, Wy, /X)=F (ylis.l.)z + 522(1 rz) 01 \/(ylls.l.) +S 2(1 r ) (15)
511 s Froi-d

\/(y1i51)2 + 522(1_ rz)

with notations explained in this annex. We canwetsimilar” likelihood functions for other
regimes (depending on which goods are consumed®ramd then express the likelihood
function to be maximised. We finally note that, fbe derivation of this last expression, we

use the parameters restriction given by the cobhcawndition.
b. The unmanageabl e case of non homothetic demand system

Our objective now is to show the computationalidifities to deal with this censoring and
non homothetic demand system. The denominator endiémand (shares) equation is no

longer a constant. The corresponding equations3pand (14) are now given by:

E1i _1811“’]&"',811'”&4'%
w, = R R =0 (13’)
_ln;ﬂ;ﬁlk +|n7éizk:,31k

§2i _ﬂzlln& "',6’21“"ﬂ T8
W, = R R =0 (14)
—In—=% Py Zﬂlk In Zﬂlk

with the other simplifying notatiorD, = -1+ ZZ,BH In(%j. We still have two ways to
k1 j

compute the likelihood expression of this regimet’'d start with the conditional likelihood

on good 2 consumption:(w,, W, / X) = P( < -B, /wZi,xi)P(w2i /%). In that case we need

to know the distribution ofv,, subject to the data. Combining (13’) and (14’)egiv

B, —ﬁﬂ(a re,)+e,
W, = (16)

* o[BG )

P
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From this expression we see that we have a ratiov@fnormal distributions which are not
centred, nor reduced. Accordingly we cannot knoe distribution of this observation. By
extension we are not able to write the likelihooddtion for that observation.

Let's move to the second strategy whége, ,w, /x) = P(w, /e, < -B,,x )P(e, <-B, /x).

From expression (16) and using appropriate notatiomanges, we can write:

(]Oi +alie.|.i +%i — +a]Je.LI + 1 (17)

e v Be  Athe Bt he

Now the distribution ofw,; subject to the first error term and all other dataormal. We are

thus interested in getting its expectation andarere. Let’s start with the expectation:

— i lle.LI 1
) e B A ) 4o

In this expressiorE(e, /e;) corresponds to the orthogonal projectiorepfon ey, i.e. to the

regression ofey oney : E(e,/g;) = COV(E;.€,) e = 5% Y :%eﬂ (becausegand g; are

var(e;) 52

centred but not reduced). Then

)

a, +a,e; +r2e,
E(w, /X,€,) = A +,6’]jef (19)
Its variance is given by
2
VW, %.8;) = (ﬁm ie j V(e /&) (20)

with V(e, /&)= s,(1-r?)

When computing the likelihood function we also néled square root of this variance (the
standard deviation) which must be positive by dedéin. Unfortunately nothing ensures that

the first bracket term in the variance expressigyy ¢ £,;€,) is strictly positive. It can be

maintained positive by taking its absolute valu¢ such mathematical device introduces in
fine a discontinuity in the likelihood function. eneral cases, solving this ML program is
likely to fail. And we ignore here the computatibrssues associated to the concavity of the

expenditure function and stay on a three good el&mp

10
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4. The generalised maximum entropy approach with iequalities

Golan et al. (1997) on a single equation case, thelan et al. (2001) on an Al demand
system propose another way to deal with zero-cemgomstead of assuming normality of
error terms as in the ML approach, they develop GagEmators which are robust to the
specification of these error distributions. In aygeneral way, there are still a small number
of GME applications, possibly because these estirmdtave no closed form solutions. We
first briefly present this estimation method beftuening to the development by Golan and

co-authors to deal with censored demand system.
a. The Generalised Maximum Entropy approach

Let's assume first that one wants to estimate adtbetic translog demand system given by
equations (2) and (6). In a compact form, thisesystan be written as:

Y=XB+¢ (21)

In the GME literature, this relation is often refed as the consistency condition. In order to

define an entropy objective function, structuratgmaeters/3 as well as error terms are
first expressed in term of proper probabilitieg @nd w, respectively). This requires the
definition of support values for these structuratgmeters Z) and error terms\{) . GME

estimators are then solution of the following maiziation program:

max -—p.Inp-w.Inw

22
s/t Y=XB+&=XZp+Vw (22)

Solving this extremum program does not lead to edoform solutions for the proper
probabilities and thus to structural parameters emor terms. However Golan et al. (1996)
show that this program can be expressed in terniagfangian multipliers associated with
the consistency condition (22) only. They are thblke to compute their asymptotic properties
as with any other extremum estimators under standasumptions. If a) error terms are
independently and identically distributed with camporaneous variance-covariance matrix
2, b) explanatory variables are not correlated veittor terms, c) the “square” matrix of
explanatory variables is non singular and d) the afeprobabilities which satisfy the

consistency condition is non empty, then

G~ N(ﬂ (o) )) (23)

11
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Accordingly, the assumptions a) and b) can be degtng the usual statistical tests (the
Durbin Watson test for first-order autocorrelatimnthe Hausman test for the exogeneity of
regressors). If, for example, the Durbin Watson de®s not accept the null hypothesis of no
first order correlation, then the extremum progréd8) can easily be expanded in order to
specify a first order autocorrelation of residudtsthe same vein, if the Hausman exogeneity
test concludes to endogeneity of regressors, tieextremum program (22) can be expanded

with instrumental variables.
b. The censoring with the Generalised Maximum Entropy approach

Proponents of the GME approach claim that the imtiposof implicit/nonlinear/inequality
constraints on parameters is easily done becawsé&ME estimators are only implicitly
defined as the solution of an optimisation progsarhject to constraints. This leads Golan et

al. (2001) to estimate a censored Al demand systi#gimthe two following sets of equations:

Wy = ay +2Vk| log(p;) + Bi-log(R/R) +&;, when w,; >0 (24)
|

W, >a, + >y, log(p,) + B log(R /R) +&, when w, =0 (25)

with P the translog price index.

We have two major concerns with this approagirst the existence and role of virtual prices
are not acknowledged and we do not really know wltpnsumer purchases or not one good
(equation 25). Moreover positive demands are detexnby their market prices as well as
the market prices of non consumed goods (equaddnThis procedure is efficient only if
one can observe these latter market prices arteyf torrespond to the true virtual prices.
This second assumption is very unlikely to hold #mel econometric problem can thus be

viewed as an error of measurement issue.

Second these authors conduct statistical teststructiwal parameters using traditional
formulae (equation 23). In fact, it appears thaewkthey derive the properties of the censored
GME estimators, in both papers inequalities araiced to equalities (see equations A5 in
Golan et al. (1997) and the appendix in Golan et(2001)). This may be explained as

follows.

! In addition to the fact that it also ignores carigaconditions, a fact which is unfortunately tcommon
(Barnett, 2002).

12
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The GME estimator is an extremum estimator wheesdbnstraints are represented by the
consistency conditions. When forming the Lagrang@n this maximisation program,
inequality constraints are premultiplied by Lagramgmultipliers and, without taking care,
nothing ensures that the underlying constraintsegrelities or inequalities. In other words,
we are not able from the following program to knibviheoretical constraints are binding or

not:
L(p,W,A;Y,X):—p.In p—w.lnw+/1(Y—XZp—VW) (26)

where we simplify the notation by assuming propesbpbilities on parameters and error
terms. Newey and McFadden (1994) show that onessacg condition for these extremum
estimators to be consistent and asymptotically abrsithat:

vz OL() ¢

t 'a—/}‘% - N(0,) (27)
This derivative is simply the consistency conditihich expectation does not equal zero
when strict inequality does prevail. On the othandh the bias is given by the expected

difference between the “binding values” and theé€ia values”:
bias=Y - X3, - E(¢) (28)

Our understanding is that “censored” GME estimaasrslefined by these authors are biased.
This view is consistent with the results of Montarld experiments reported in Golan et al.
(1997): GME estimates always have Mean Square EM&E) greater than their variances
while ML estimates may be unbiased (depending enetkperiments). Nevertheless, these
same Monte Carlo experiments show that GME MSErareh lower than MSE from other
estimators, implying that variance reduction oledinwith the GME approach is a very

important asset.

5. Our solution: the virtual price concept with Gereralised Maximum Entropy

The virtual price approach of Lee and Pitt is nfoem a theoretical point of view but
empirically untractable with ML estimation techneguOn the other hand, the no closed form
GME solution is easy to implement and solve. Westipuopose to combine these two

branches of econometric literature.

Like Lee and Pitt (1986), we start by recognizimgttvirtual prices are variables to be

estimated simultaneously with other structural peiers. On the other hand, while Lee and

13
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Pitt use substitution to reduce the dimension efdbonometric program, we directly specify
the virtual prices variables in our GME prograneligther structural parameters. So they are
the product of proper probabilities and supportigal

Our full program to estimate a censored, non hosgtathand globally regular translog

demand system is given by (wittithe index for support values):

a, = ; PetnZeten ; Poien =1
& = ; PaimZetim Zm) Paim =1
T, = Zm: P, L Zm: P =1

6, = Z PaimZadm Z Pam =1

st. a +> By In(II::;‘J+eki

Wy =

vy
0=w, (7Tki - pki)
p=686

1—;2% In(%J >0

(29)

This program obviously deserves several remark® filst two terms in the objective
function and the first two lines of constraints ageite usual in GME programs: they
correspond to the entropy on tle structural parameters and the error terms andhaw t
(proper) definitions respectively. The third term the objective function is the entropy
related to virtual prices and the third line of styaints their proper definitions. To simplify
the notations, we introduce virtual prices for gidlods, positively consumed or not. But we
only maximise the entropy function when virtualgas are truly endogenous variables and
not constrained to be equal to market prices wherconsumption is strictly positive (hence
the Kronecker delta). This is the purpose of tix¢hsine of complementary constraint which
basically implies that the virtual price is equakhe market price when the good is positively
consumed, is endogenously determined otherwise.|d$teterm in the objective function

corresponds to the entropy related to new variable®duced to impose the concavity

14
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condition (and fourth line of constraints their peo definition). Basically this condition is
maintained by adopting a Cholesky decompositionu(LE978) (see the seventh line of
constraint expressed in matrix form). Finally th#hfline of constraint is obviously the
demand system and finally the last inequality eesuhat the indirect utility function is an
increasing function of the income. More generalig last two constraints ensure that the
translog demand system is globally regular, hehaethere exists only one system of virtual
prices and finally that the maximisation program)(% feasible and has one unique global

optimum (van Soest and Kooreman, 1988).

Without being ideal our solution offers several ahages compared to current approaches to
deal with censored demand systems. First unlike llbe and Pitt approach, analytical
expressions of virtual prices are not needed tondfikeite the extremum maximisation
program. Accordingly we are not constrained in tiedinition of our program to restrict
ourselves to a very limited number of goods. Mosxave are not constrained by the flexible
functional form used to represent preferences.herother hand we must admit that this form
must be globally regular, i.e. at every point, idaer to ensure the existence of a solution and

the translog is a very good candidate.

Second our solution does not require knowing thekatagrices that prevail when the good is
not consumed. On the contrary, the Lee and Pittoggh starts from the explicit assumption
that virtual prices are lower than market pricese \Wdmit that there are some cases
(household surveys) where the econometrician is sbfind good proxies for these market
prices. There are also cases where adopting a tnarike is not trivial. For instance let’s
assume that one country (say the US) is not immpra good from another one (say
Germany) in a particular year and imports are namomotherwise. Taking this particular
year export price of the latter (Germany) to adhline (say the Netherlands) would imply that
German production is homogeneous. However fronptegious years we may observe that
German export prices are differentiated by coustrie fact we have the possibility with our
solution to capture the level of market prices whiggy exist. We can simply introduce this

information when we define the upper bound of thyep®rt values £,,,,,)-

Third our solution allows specifying a demand sistehich is simultaneously zero-censored,
non homothetic and globally regular. We thus stiith all properties of the micro economic
theory of consumer behaviour. In fact the curréetdture on the econometric estimation of
demand systems either focuses on the monotony pyomreon the concavity property of the

underlying expenditure functions. Both issues asklan acknowledged simultaneously.

15
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However Barnett (2002) and Barnett and Pasupat®@3R strongly argue for the joint
consideration of these two properties becausegbadioption of these properties may lead to

false economic analysis.

On the other hand our solution is not completeblaldin the sense that it is impossible to
derive the asymptotic properties of our proposddnesors in the general non homothetic
case. This is not really surprising because otlsWIL estimators would exist. Accordingly
we only empirically determine the properties ofstaestimators by relying on bootstrapping
techniques (Gallant and Golub, 1984). Finally wentioe that in the simpler homothetic case

it is possible to derive these properties as inMhecase (Newey and McFadden, 1994).

6. Sampling experiments

In the general case, our proposed estimator cabeoexpressed in closed form and
consequently its finite sample properties cannotdbeved from direct evaluation of the
estimator functional form. Accordingly we report tims section the results of Monte Carlo
sampling experiments. We first compare it to the bad Pitt ML approach in a three good
homothetic case and then move in a second stepntmnahomothetic case. We detail our

databases beforehand.

a. Data assumptions

In order to generate our data, we first assume domeevalues for structural parameters. In

the homothetic case these assumptions are:

-01 05 -025 -025
a=|-02|and=-025 05 -025|.
- 07 -025 -025 05

Then we generate series (1,000 points) for theofqgrices and log of expenditure according
to independent centred normal distributions withareces equal to 0.3. On the other hand we
assume a correlation among error terms and simal@et normal distribution. In order to
do that, we first draw from two independent centremal distributions with variances
equals to 0.1 and then generate, through a Cholés&kgmposition, a third one assuming a
correlation between the two former ones. The ragpjoint distribution is the following:
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2
(%J = N([O}( > ,oslszjj with s, =s, =0.084and p = 0. 565
e, 0)\pss, s,2

With all these data, we then simply apply equaf@nto determine 1,000*3 shares. Some of
them are negative: 30.6% for the first good, 17fé%the second good while the third one is
always consumed. This reduces the dimension of mbigm when estimating with the ML

approach. This does not prevent the comparison leetite two approaches.

For these cases when negative shares do appedefwe a new model where we impose that
these shares are null. This allows computing Mirpreces. In the same time the shares of
positively consumed goods are modified with thattal price demand system” in order to
fully satisfy theoretical conditions. During thisogess we constrain the marginal utility of
income to be positive. We end up with a datasetamoimg 1,000 theoretically consistent
observations of a three good system with some zérdbat case we have information on the
market prices as well as on the virtual prices. pimgose of the econometric estimation is to

retrieve the latter ones as well as the strucpaehmeters.

In the non homothetic case, we only modify the maif [ structural parameters while all

other assumptions are maintained. This matrix is:now

03 -01 -025
B=| -01 05 -03
-025 -03 05

With these parameters, income elasticities areesely equal to 0.5, 1 and 1.5. The
proportion of negative demand shares is equal f6?22or the first good, 16% for the second
good and still none for the third good. We procasdabove to determine the virtual prices

and the final non homothetic dataset.

b. Econometric results on the homothetic case

When one wants to perform GME econometrics, it iegsary to define the number and the
level of support values for all econometric vareshl This possibility is widely discussed in
the GME literature (Golan et al., 1996). Proponeftis approach argue that this is a means
for the econometrician to incorporate the samplermation. Opponents claim that this
allows the econometrician to bias the results.hi éxperiments reported below we always

assume that there are three symmetric support yvdlueeach econometric variable. We
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define very large support values so as to not dhice a priori information on structural
parameters, i.e. =10, 0 and 10. The support valudsearror terms are given by -1, 0 and 1.
On the other hand we assume like Lee and Pitwilagl prices cannot be higher than market
prices when defining their support values. We alssume that these virtual prices cannot be

negative (the lower bound of log of price is —2).

The GME estimation is performed with the GAMS softevarhe ML one has been conducted
on the SAS software because GAMS does not allowirgplintegrals with endogenous

bounds.

In both methods, the program is highly non lingandt et al. (1999) advocate using simple
LS results to give starting values. In a firstlin@e choose as starting point the true values of
parameter. The results we obtained are presentathlm 1.

Table 1: Comparison of GME and ML estimates on a hmothetic demand system with

good starting values

Beta alpha r sl s2 R2 Est/, /| | EStT, /|
Truer7i, Py
Initial 0.50 -0.25 -0.25 -0.10
values -0.25 0.50 -0.25 -0.20| 0.565| 0.084| 0.084
-0.25 -0.25 0.50 -0.70
GME 0.430 -0.192 -0.238| -0.114 0.729| 71.31%| -29.9%
estim -0.191  0.434 -0.242| -0.204| 0.304| 0.073| 0.106| 0.602 4.82%| -23.0%
-0.238  -0.242  0.481| -0.682 0.434
ML 0.473 -0.221 -0.252| -0.091 0.727| 64.27%| -38.9%
estim -0.221 0507 -0.285| -0.187| 0.588| 0.096| 0.125| 0.619| -39.23%| -369.9%
-0.252  -0.286  0.538| -0.722 0.434

Structural parameters estimated through ML seelveta bit closer to true parameters than
those estimated through GME. However virtual prieesBmated by GME (notably good 2)
are closer to “true” virtual prices than thoserastied by ML. This probably explains why the

gualities of adjustment for all equations are netré same for both methods.

We secondly adopt different starting values: twienesting empirical results appear. Firstly
the ML approach does not always lead to a solutibite we always get one with the GME
one. Secondly the econometric results obtained thehGME are rather independent of these

initial values. This indicates a good stability betmethod. For instance table 2 reports the
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GME econometric results with new starting valueslevthie ML program fails to converge.
Our tentative interpretation of these results is fbllowing. The concavity condition is
explicitly introduced as a firm constraint in théVi& program (see program 29) while only
implicit in the derivation of the likelihood exprgen. Accordingly, when solving the GME
program the optimisation procedure first searches d feasible region of structural
parameters and virtual prices, and then maximisesbjective function. On the other hand,
the ML program does both simultaneously and may thfficulties between the optimisation

of the likelihood function and the satisfactiontleéoretical conditions.

Table 2: GME estimation of a homothetic demand systn with poor starting values

Beta Alpha r sl s2 R2 Est/, /| | EStT, /|
Truer7i, Py

Initial 0.30 -0.20 -0.20 -0.30
values -0.20 0.40 -0.20 -0.50| 0.10| 0.05| 0.02

-0.10 -0.20 0.30 -0.20
GME 0.430 -0.192 -0.238| -0.114 0.729| 71.31%| -29.9%
estim -0.191 0.434 -0.242| -0.204| 0.304| 0.073| 0.106| 0.602 4.82%| -23.0%

-0.238 -0.242  0.481| -0.682 0.434
C. Econometric results on the non homothetic case

One great advantage offered by our solution ispibesibility to estimate zero censored non
homothetic demand system. Our estimation prograthisncase is more non linear than in the
homothetic case. Accordingly we again test the iseitg of the results to starting values.

Results reported in table 3 show again a greatlisyatsr GME results with respect to these

initial values.
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Table 3: GME estimation of a non homothetic demandsystem with good and poor

starting values

Beta alpha R2 | Estrr, / Truert, ESt7T, / Py
Good Initial 0.30 -0.10 -0.25 -0.10
values -0.10 0.50 -0.30 -0.20
-0.25 -0.30 0.50 -0.70
GME estim 0.368 -0.077 -0.191 -0.114| 0.561 -46.27% -15.30%
-0.077 0.394 -0.317 -0.206| 0.598 61.43% -10.79%
-0.191 -0.317 0.508 -0.679| 0.486
Poor Initial 0.40 -0.10 -0.10 -0.30
values -0.10 0.40 -0.30 -0.50
-0.10 -0.30 0.20 -0.20
GME estim 0.268 -0.077 -0.191 -0.114| 0.561 -46.27% -15.30%
-0.077 0.394 -0.317 -0.206| 0.598 61.43% -10.79%
-0.191  -0.317 0.508 -0.679| 0.486

d. Empirical properties of estimators

So far we only discuss the econometric resulterims of existence of solution, the quality of
adjustment and the sensibility to starting valid& now focus on the precision of the
estimates. As said earlier, delivering and/or cotmguthe asymptotic properties of all

estimators are challenging and we rely here ondbi@qt inference techniques.

Basically the bootstrap is a re-sampling proceduhieh allows computing the MSE for each
method. In a nutshell, the principle of this prasexis as follows in a simple case as equation
(22). Let B be the number of bootstrap samples.thé¢a apply B times the following two
steps. First we draw randomly and with replacenfrem an initial sample (Y,X) a sample of
the same dimension noted (Y*, X*). Second we edinihe model on this sample and get

estimated parametei8 . Once this is done, we are able to compute thenraed variance
of £* on the B bootstrap samples as well as the MSHioritelt is defined as the sum of the

variance and the squared bias:
MSE = (8- B*)" +Var (8*)

As expected, results reported in table 4 show@®ME and ML econometric results converge
on the homothetic case in terms of MSE. The MSE obtawmith the non homothetic case are
not directly comparable to homothetic ones but st do not observe radical changes. This

gives one first empirical support to our solution.
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Table 4: Properties of GME and ML estimators: resuts from bootstrapping

Initial values . Estimated parameters MSE = bias?+variance
Form Méthod
= true values Alpha Beta Alpha Beta
-0.1146323 | 0.4301149 -0.1916621 -0.2384528 |0.000229893(0.005167169 0.003393633 0.000398568
Linear yes GME -0.2035714 | -0.1916621  0.433816  -0.2421539 | 2.15688E-05|0.003393633 0.004252037 0.000235189

-0.6817963 | -0.2384528 -0.2421539  0.4806067 [0.000357447]0.000398568 0.000235189 0.000806596
-0.090787 | 0.4728779 -0.221023 -0.251855 | 9.25639E-05(0.000805946 0.00085358 0.000124002
Linear yes ML -0.186579 -0.221023 0.5069408 -0.285918 |0.000195076| 0.00085358 0.002588352 0.001364752
-0.722633 -0.251855 -0.285918 0.5377726 |0.000545003]0.000124002 0.001364752 0.001671818
-0.1146323 0.430115  -0.1916622 -0.2384528 |0.000229893|0.005167169 0.003393633 0.000398568
Linear no GME -0.2035714 | -0.1916622  0.4338161 -0.242154 | 2.15688E-05(0.003393633 0.004252037 0.000235189
-0.6817963 | -0.2384528  -0.242154  0.4806068 [0.000357447[0.000398568 0.000235189 0.000806596
-0.090794 | 0.4728756 -0.22101 -0.251865 | 8.34666E-05| 0.00080618 0.000853747 0.000124004
Linear no ML -0.186585 -0.22101 0.5069351 -0.285925 |0.000181549]0.000853747 0.00017205 0.001364544
-0.722622 -0.251865 -0.285925 0.5377899 [0.0005112580.000124004 0.001364544 0.001671619
-0.1142763 | 0.2684858 -0.0770935 -0.1913923 [0.000218359|0.054206738 0.029875726 0.003746322
Non Linear yes GME -0.2060647 | -0.0770935 0.3942379 -0.3171444 | 4.42671E-05(0.029875726 0.010940225 0.004910412
-0.6796589 | -0.1913923 -0.3171444 0.5085368 |[0.000439538]0.003746322 0.004910412 0.000417259
-0.1142763 | 0.2684858 -0.0770935 -0.1913923 [0.000218359(0.054206738 0.029875726 0.003746322
Non Linear no GME -0.2060647 | -0.0770935 0.3942379 -0.3171444 | 4.42671E-05|0.029875726 0.010940225 0.004910412
-0.6796589 | -0.1913923 -0.3171444  0.5085368 [0.000439538]0.003746322 0.004910412 0.000417259

7. Concluding comments

The econometric estimation of zero censored demgsiera faces major difficulties. The
virtual price approach pioneered by Lee and Pi@8@) in an econometric framework is
theoretically consistent but empirically feasibldyofor homothetic demand system, and even
may fail to converge depending on initial condiBoin this paper we propose to expand on
this approach by relying on the generalized maximemtropy concept instead of the
Maximum Likelihood paradigm. The former is robustie error distribution while the latter
must stick with a normality assumption. Accordinglye econometric specification of
censored demand systems with virtual prices is memiger even with non preferences
defined over several goods. lllustrative Monte Gashmpling results show its relative

performance.

There are several extensions to this paper that beusbntemplated before getting definitive
statements on this long standing issue. In the Bl@#rlo experiments reported in this paper
we only consider three good demand systems. Wetlso five good demand system with
the GME approach and we face no econometric ditfeil Nevertheless it will be interesting
to test the method in more contrasting cases \&itlfer shares of zero points for instance. The
difficulty we had to deal with up to now is not égtimate but rather to simulate in the very
first step a consistent dataset. In particulareperience shows that it is crucial to maintain
the often overlooked condition that marginal utilif income must be positive. In that respect
we fully agree with Barnett (2002) that completspect of all theoretical conditions is very

crucial.
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Another extension is to confront this approach ¢al rdatasets and contrast it to other
methods. Real datasets are always more difficldhtdyse than built-ones due to endogeneity
and/or multi-collinearity issues for instance. Aatiag to results reported by van Akkeren et
al. (2002) we are quite confident that our approaghallow managing these cases but this is

to be checked.

Finally our approach allows estimating simultandpwsd explicitly structural parameters
and virtual prices. In the entropy objective fuonti one has the possibility to weigh one
component relative to the others. For instancemag improve the prediction or the precision
of the estimates depending on its own objectiveldet al., 1996). It may be interesting in
some cases to focus on the virtual prices and herotases on the structural parameters.
Additional works may explore deeper this possipilit
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Annex 1: Derivation of the likelihood function whenonly good one is not consumed

We have two possibilities to get this expressioth @xplore both below.
Solution & 1(w;,w, /%) = Ple, < -B, /w,, X JP(w, / X)

This likelihood expression implies to know the lafwg; subject to data:
w,; =0

- B, _ﬁllln%-'-ﬁllln%-l-eﬂ =0

TT. 1
o In2t=—

“B -e )+inPu
R g, B ma)tng

. 7. . .
So, when replacmc‘tnﬁl' in Wy expression, we get:

Wy = _§2i +ﬁzlln%_ﬁ21[ﬁill(_ Eli _qj)+|n%J_e2i
-_g +Pu(g
= Wy = =B, +—=(By il” %
w +iBire)-e

Let:

a, =-B, +&§h and a, = Pu
11 11

which gives:w,, = a, +a,e, —e,
As a linear combination of normal distributioms; follows a normal law:
E(w,)=a, +a,E(g;)) —E(e,;) =ay

andV (w,) =a?,V(e;) +V(e,) - 2a; COV(g;, &) = O3S, +S, — 2a,1'SS,
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W, = N(aOi,afsf +%2 - 2a,1SS,)

P(Wzi /Xi) = f(Wzi;O'Oi 'alzislz + 522 _Zalirslsz)
= 22 21 f 2 2W2i 2_ aOi ,0,1
Jaisi +s-2a,rs8, (a2 +$-2a,r8s,

W, —ay T 6,

Moreover, g, = , thus g, /w,, is a linear function ok, : this random variable

1

follows a normal law.

E(e, /w,,) is the orthogonal projection @&, on the space generated Wy :

E(e; /wy) :%(w2i —E(w,)) (W is not centred)

— COV(eL Ay 0,6 %i)
E €e; /W) = I =~
( W2| ) v r( o ey i ) (W2| Oi )

ay Cov(e;, €;) —cov(g;, &) (Wz' -a, )

E(e, /w, )=
(e.l_l W2|) az, var(qi) -2a, COV(QJ- ' %|) + var(%i)

(W2i —dy )(ali 521 ~ rSlSZ)
azli S21 —2r a;Ss, + S22

E(e; /wy) =

V(e /w,) = E|(e, ~ E(e, /w,))? 1w, | = E|(e, - Ece, 1w,
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V(%/WZ.):E[(Q_(Wzi—ao.)(al 1 rslsz)j]

az; %~ 2ra,Ss, +

Vie ) = El(el _ (wy g ey, - rslsz)ﬂ

azli 321 = 2r a;Ss, + 522

a2,s% - 2ra;ss, +s? a? -2ra;ss, +?

Vi ) = e -2 St rse)), EK(WZ. ~a)ays —rslszﬂ

(a.s2 —rslsz) (a.s2 —rslsz)2 >
V(e /Iw,)=s2 -2 i= 1 Ele. (a,e —e, Chat Ella.e —e,
(& /wy) =% 0%, 2, - 2ra,ss, + %, (%(%eh %.))”f( 2 @ -2ra,s, +522)2 [( 1S %)]

V(el-/W-)=82 -2 (all 1 rslsz) + (all 1 rslsz)
T Tay e - 2rayss v+, (07,9 - 2rayss, + )

o _ 2
V(e /wy) =% - > (glisl rS‘LSZ)
alisl_zraﬂs.tsz"'szz

Let: y, =Wy =y Yy =—0y + r2 we get then:
S

_ = Vo ViS4
E(e. /wW,) =
(6 / V) (ris )2 +s2,(1-12)
And
(Szlyl' )2 (yl' 51)2 + S22 (1_ rz) B (Szly 21‘ )
V(e )=s2 — i -2 i i
&) =S SPrei-) ST (s pr,0-19)
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_ $%,5%, (1_ rz)
V&) =0 P ,0-19)

So:

e /Wy, X = N(( ~ Vo VuSi 2,2, (1-r2) J

vis ) +s2,(1-12) (s P+ 2, (1-r?)

=y _1_rcl 5. ~ VoVuS 321322(1_r2)
Plevs B rw x)=1 F( B“’(ylisl)uszz(l—rz)'(ynsl)uszz(l—rzﬂ

= VoiVuS
4+
P skre-r) o
$SV1-r2 ’
Vs f+e,(1-r2)

=F

thus,

LWy, Wy /%) = P(Qj = _§1i /W2i’Xi)P(W2i /%)

B YaVuS% f Yoi 0 ,1]
> sk oo @(yﬁsl)uszz(l— )
$S,V1-r2 ’ Jhus ) +s2,(1-r2)
\/(ylisl)z + 522(1_ rz)

I(wy, Wy /%) =F

Solution 2 I(wy, W, /%) = P(WZi ley < _Enlxi)P(en <-By/X)

Wy =0y + 0,6 — €,

E(w, /%,6) =ay +a,e;, —E(e,/€;)
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Yol E(e,/e) =" 2e,

Thus E(w, /%.,€;) =aq + 0,8, _r%eli

V (w, /%,e;)=V(e,/e;) = s,3(1-r?) (see demonstration for non linear system)

Sow, /%, 6 = N{%i +0,§; _riemszz(l_rz)}

The density of this random variable is given by:

f{WZi;aOi Ta,€; _ri% 7522(1_ rz)j

With f(y;,u,az) the cumulative distribution function of a univadanormal law with

expectationu and variances? at pointy .

After centring and reducing:

1

Wy _(am + 0,6, _r%elij
j 2 o
S,V1-r2 s,V1-r2

Let's come back to our likelihood:
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LWy, Wy /%) = P(Wzi le < _§1i’Xi)P(e.l.i <-B; /x)

We now know the distribution ofw,, /x,e,) and we know that(eli /xi) follows a centred

normal law of variance;2.

Thus:
w 1 W _(%i t a6 _rzlze.l.i] 1
_ : e .
L (W, Wy, /X)) = f o1l|—f|+:01(d
(W e 1) l s,V1-r2 sV1-r2 s (% 1] 5
w 2|_(a0i+a1iq_i_r2eliJ g
(W, Wy, /%) = 01|f|—=:01d
(W Ve 1) Sl%\/l r2 JE; s,V1-r2 + (q 1] &
Let: yo =Wy —ay Jy =—0y +r—= >

_ 1 T e Yot V& g |
(W, Wy /%) = fl 2L ,01|f| 2;01|d
(W, W / %) Slszx/l—rZ_L (sle = J(Sl ]el

Writing the expressions in terms of density funei@f normal laws, we get:

_ T 1(m*tna)) 1 1e,
I . i/ . _ —\/ai 1i | d
(5, e /) = qu/l r2 l V{ 2 2,(1-r2) 2 2 &, e

21 1 1
l(Wli’WZi/Xi)_ £7T F{ EW(Sﬂ(Vm+V1i%)2+522(1‘r2)921i)Jdel
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Tl 1 1
LWy, Wy, /%) = J. P F{ Ew(sﬂyzm + 282 Vo Vi€ t+ € (\/yzli S, + (1~ rz))zjjdel
-By 2

(341}/ %5 V2 )
V2t S, (1_ rz)
I S 1 1 (S41V20i VA ) + $% Vo Va
slsz\/m 5, Zﬂexp 2% 8%, (1_ rz) V2 8% 5%, (1_ rz) \/yzli $° +8%, (l_ rz

+e% (\/y21i &, +52,(1- rz))z

+

2
S1)2y

[(wy Wy /%) =

) &V &, + 5, (L-12) | |de;

1i~1

2
1 72 11 &, (1-r2)s"y2, (Swan)
I(w, W, /Xx)=——M | — -= 2 0i 2 2 2 (1-r2 0i /i d
(e s ) sS,V1-r2 _JE; 2nex{ 2321522(1—r2)[y21i521+522(1—r2)+ &1y + 7 r)+\/y2 &, +52,(1-r?) G

2 2

- (L ! Yo 1 (e (2 22+ 53,(1-12)+ (S )
[y, Wy /%) =——F—— | —exg —-—= ol = AVASTRS 2 0i Vai d
(W, Wy /%) SS,V1-r2 5 27 H 2[\/y21i521+522(1_r2)J 2[[ ss,V1-12[p2, &2 +2,(1-r2) S

2 2

(31V0iy11)

(W Wy /%) = T 1 exd -1 Yo A ! & 2, + 22, (1-17) |
ne i S_Lsszal\/ﬁ p 2 \/y21i821+822(l—r2) \/ET 2 Slsz,ll_rZ e‘L

\/yzli Sz1 + 322(1_ rz)

2

(521y i Vai )

F ? &+ 2 <2 2 (1—r2
l(Wli’WZi/Xi):Sl - _[ L e[{ 1( Yo )]J 1 _} (y1i51+32(1 r)) de,

JV2, &2, + 82, (1-r2 Jor R T2 55,41-r2
\/yzli 821+822(1—I’2)

11— 2 _
Y2, S, +2,(1-r2 f(in 0,2, + 322(1_ rz)) SSvV1-r2 f( _-—( (S 1y0iylj) 321322(1 rz) Jdel

1 0
(W, W, /%) = ———— ; :
( 1 2i X1) S_l% (1_r2 _J;l‘ y2u321+322(1_r2j yzﬁszl+322(1_r2)) y2]j321+322(1—r2)

(W Wy /%) = F (g 10,12, 2, + %, (1-12))

WYy 2 52,(1-r2)
f = (Sly0|y1|) 4, S 2(
(ell Tl i) e v 0o

L3

31



Working Paper SMART — LERECO N09-12

LWy, Wy /%) = f (VOi 0, )2 8% + 522(1_ rz))(l_ F[_ B, ;_(

(Swor) ,,(1-r?) B

VoSt 522(1_ rz)) , VoSt 522(1_ rz)

B (521V0i Vi )

1 Ve
(W, Wy /%) = f :
(Wl| W, XI) \/V2n321+522(1_r2) [\/yZ]—i 521+522(1_r

| % 5, +9,-17)
O1|F 01
2) s;s,V1-r2

\/yzli SZ1"'322(:|-_r2)

32



Working Paper SMART — LERECO N09-12

Les Working Papers SMART — LERECO sont produits par 'lUMR SMART et 'UR LERECO

. UMR SMART

L'Unité Mixte de Recherche (UMR 1302) Structures et Marchés Agricoles, Ressources
et Territoires comprend l'unité de recherche d’Economie et Sociologie Rurales de
'INRA de Rennes et le département d’Economie Rurale et Gestion d’Agrocampus
Ouest.

Adresse :

UMR SMART - INRA, 4 allée Bobierre, CS 61103, 35011 Rennes cedex

UMR SMART - Agrocampus, 65 rue de Saint Brieuc, CS 84215, 35042 Rennes cedex
http://www.rennes.inra.fr/smart

e LERECO

Unité de Recherche Laboratoire d’Etudes et de Recherches en Economie
Adresse :

LERECO, INRA, Rue de la Géraudiére, BP 71627 44316 Nantes Cedex 03

http://www.nantes.inra.fr/le_centre_inra_angers_nantes/inra_angers_nantes_le_site_de_nantes/les_unites/et
udes_et_recherches_economiques_lereco

Liste compléte des Working Papers SMART — LERECO :
http://www.rennes.inra.fr/smart/publications/working_papers

The Working Papers SMART — LERECO are produced by UMR SMART and UR LERECO

*  UMR SMART

The « Mixed Unit of Research » (UMR1302) Structures and Markets in Agriculture,
Resources and Territories, is composed of the research unit of Rural Economics and
Sociology of INRA Rennes and of the Department of Rural Economics and
Management of Agrocampus Ouest.

Address:

UMR SMART - INRA, 4 allée Bobierre, CS 61103, 35011 Rennes cedex, France

UMR SMART - Agrocampus, 65 rue de Saint Brieuc, CS 84215, 35042 Rennes cedex, France
http://www.rennes.inra.fr/smart_eng/

« LERECO

Research Unit Economic Studies and Research Lab

Address:

LERECO, INRA, Rue de la Géraudiére, BP 71627 44316 Nantes Cedex 03, France

http://www.nantes.inra.fr/nantes_eng/le_centre_inra_angers_nantes/inra_angers_nantes_le_site_de_nantes/|
es_unites/etudes_et_recherches_economiques_lereco

Full list of the Working Papers SMART — LERECO:
http://www.rennes.inra.fr/smart_eng/publications/working_papers

Contact

Working Papers SMART — LERECO
INRA, UMR SMART

4 allée Adolphe Bobierre, CS 61103
35011 Rennes cedex, France

Email : smart_lereco_wp@rennes.inra.fr

33



Working Paper SMART — LERECO N09-12

2009

Working Papers SMART — LERECO
UMR INRA-Agrocampus Ouest SMART (Structures et Marchés Agricoles, Ressources et Territoires)
UR INRA LERECO (Laboratoires d’Etudes et de Recherches Economiques)

Rennes, France

34



	couverture wp 09-12
	wp09-12 texte
	dos wp 09-12

