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Estimating censored and non homothetic demand systems: the generalized maximum 

entropy approach 

Abstract 

The econometric estimation of zero censored demand system faces major difficulties. The 

virtual price approach pioneered by Lee and Pitt (1986) in an econometric framework is 

theoretically consistent but empirically feasible only for homothetic demand system. It may 

even fail to converge depending on initial conditions. In this paper we propose to expand on 

this approach by relying on the generalized maximum entropy concept instead of the 

Maximum Likelihood paradigm. The former is robust to the error distribution while the latter 

must stick with a normality assumption. Accordingly the econometric specification of 

censored demand systems with virtual prices is made easier even with non homothetic 

preferences defined over several goods. Illustrative Monte Carlo sampling results show its 

relative performance.  

Keywords: censored demand system, virtual prices, generalised maximum entropy 

JEL classifications: C34, C51, D12 

 

L’estimation des systèmes de demande censurée et non homothétique à partir du 

maximum d’entropie généralisée 

Résumé 

L’estimation économétrique des systèmes de demande avec des valeurs nulles pose de 

nombreuses difficultés. L’approche par les prix virtuels proposée par Lee et Pitt (1986) dans 

un cadre de maximum de vraisemblance est théoriquement consistante. Par contre sa mise en 

œuvre est difficile et aujourd’hui limitée à des systèmes de demande homothétiques sur peu 

de biens. Dans ce papier, nous proposons de retenir cette notion de prix virtuels mais d’utiliser 

l’approche économétrique du maximum d’entropie généralisée plutôt que le maximum de 

vraisemblance. Bien que n’offrant pas de solution analytique, cette approche est robuste aux 

spécifications des termes d’erreur. A partir de simulations de Monte Carlo, nous montrons 

qu’elle permet d’estimer efficacement des systèmes censurés et non homothétiques avec 

plusieurs biens.  

Mots-clefs : système de demande, troncation, maximum d’entropie 

Classifications JEL : C34, C51, D12 
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Estimating censored and non homothetic demand systems: 

the generalized maximum entropy approach 

 

1. Introduction 

When assessing economic issues at a very detailed level (like the effects of trade policy 

instruments defined over thousands of goods), one is very likely to be confronted with huge 

amount of zero values (in the trade case, see Haveman and Hummels, 2004). The simple 

practice which consists of ruling out these particular values is well known to be misleading 

(Romer, 1994, Wales and Woodland, 1983). However their specifications have always been 

proved to be difficult for quantitative modellers. This paper deals with the econometric 

challenges associated to the estimation of zero-censored demand systems.  

The estimation of zero-censored demand systems faces two main difficulties. First the 

estimators must take into account that the endogenous variables cannot be negative and 

traditional methods like the least squares (LS) or maximum likelihood (ML) do not allow this 

censorship. Second prices associated to the zero flows are not observed unless strong 

assumptions (like average price of previous years or price of your neighbour) are enforced. 

For a long time two general approaches have been devised to estimate such demand systems: 

a) a “statistical” approach where the focus is on the random disturbances, b) an “economic” 

approach where the focus is on the economic reasons (virtual prices) that justify these zero 

values.  

The first one is a two-step procedure of Heckman’s type: in a first step we statistically 

determine whether values are positive or not. Then in a second step we estimate the positive 

values taking into account the results of the first step (with the inverse Mill ratios). This 

approach is widely used (Yen and Lee, 2006 for instance) because this does not require to get 

prices associated to the zero values. However Arndt et al. (1999) point out the lack of 

economic theory underlining this approach and furthermore show with Monte Carlo 

experiments that the results from the first approach are as bad as those from using the simple 

ordinary LS approach (which is known to be a biased and inconsistent estimator in these 

instances).  

On the other hand the second approach (pioneered by Lee and Pitt, 1986) is fully consistent 

but empirically untractable with non homothetic demand systems or even many good 
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homothetic demand systems. This problem was already acknowledged by these authors. In 

fact we have not been able to find empirical papers using this approach with a flexible and 

non homothetic functional form like the non linear translog. Some computational works are 

nevertheless under way to resolve this approach through simulated ML techniques for high 

dimensional integrals (Hasan et al., 2002).  

More recently Golan et al. (2001) rely on the Generalised Maximum Entropy (GME) 

econometric method to estimate a censored non homothetic Almost Ideal (AI) demand 

system. The GME technique has several advantages: it is robust to assumptions on errors, its 

asymptotic properties are similar to those of traditional estimators while Monte Carlo 

experiments show better properties in small sample cases (van Akkeren et al., 2002) and 

restrictions on parameters are easily introduced. Basically Golan et al. (2001) extend a former 

paper of Golan et al. (1997) from a single equation to a demand system. This new method is 

intermediate between the two former ones in the sense that some theoretical restrictions on 

demand systems (adding up and concavity on observed consumption) can be imposed during 

the single-stage econometric procedure. On the other hand, the existence and role of virtual 

prices as formalised by Lee and Pitt are not acknowledged.  

The main contribution of our paper is to offer a new way to estimate zero-censored and non 

homothetic demand system by combining the advantages of the virtual price approach and the 

GME technique (instead of the maintained assumption of normality as in the ML). In order to 

illustrate the relevance of our solution, we first compare the GME/ML estimations on a simple 

simulated censored homothetic demand system. It appears that, when initial values are set 

close to true values, both estimations return similar structural parameters. When these initial 

values are set randomly, then the GME outperforms the ML estimations. Then we evaluate 

our econometric solution with a simulated non homothetic censored demand system. Its 

econometric performance is unchanged.  

Another related contribution of this paper is to question the properties of the GME estimator 

derived by Golan and his co-authors. Our doubt applies to both single equation and demand 

systems cases; in this paper we present our view on the latter. Basically when deriving the 

properties of their estimators these authors do as if their models were not censored. In other 

words they define a Kuhn and Tucker constrained maximisation program but fail to recognize 

inequalities when deriving it.  

This paper is organised as follows. In the next section we briefly present the non linear 

translog demand system that supports our analysis. In the third section we explain the virtual 
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price approach developed in Lee and Pitt (1986) and the computational difficulties associated 

with the ML estimation of this system when censored at zero. We turn in the fourth section to 

the approach suggested by Golan et al. (1997, 2001) with the GME techniques. Then we 

detail our approach in the fifth section that combines the advantages of previous ones and 

report the results of our Monte Carlo experiments in the sixth section. Section seven 

concludes.  

 

2. The translog demand system 

Several flexible demand systems for the representation of consumer behaviour have been 

proposed in the literature (the translog, the Almost Ideal Demand System, the Rotterdam 

differentiated system, …). In this paper we choose the translog demand system because van 

Soest and Kooreman (1993) show its desirable properties to deal with zero censoring. In 

particular it is possible to globally impose regularity without destroying flexibility. Moreover 

the existence of virtual prices dual to zero flows is ensured, even if the demand system is non 

homothetic.  

Let’s start with a random indirect utility function to represent the behaviour of a consumer i  

choosing among different goods indexed by k  or l . This indirect utility function has the 

following form:  
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with usual notations for variables. Like Lee and Pitt (1986), we adopt the following 

normalisation rule (which ensures adding-up): 

1−=∑
k

kα  

and furthermore assume that  

0=∑
k

ke .  

Then from the Roy’s Identity we obtain the corresponding marshallian demand system 

expressed in shares form:  
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This representation of preferences is globally regular if the matrix made of the β  parameters 

is symmetric (symmetry condition of the slutsky matrix) and positive definite (concavity 

condition of the expenditure function). By definition of the translog indirect utility function 

the homogeneity condition is satisfied. This representation remains flexible in the Diewert 

sense (second order flexibility) even if we impose that the sum over all these β  parameters is 

null: 

∑∑ =
i j

ij 0β  (3) 

This restriction leads to the so called log translog model which is of particular interest in 

empirical applications that use aggregate data because it is consistent with a notion of exact 

aggregation of individual demand functions (Moschini, 1999).  

Marshallian prices and income elasticities of these demand functions are given by (with the 

household index removed) :  
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From the last equation, it appears that imposing homothetic preferences requires that:  

∑ =
j

ij 0β  (6) 

In that case the denominator in equation (2) reduces to –1 and the demand system is then 

linear in structural parameters.  
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3. The virtual price approach with maximum likelihood  

So far we still have not considered zero demands. Following previous papers (like Neary and 

Roberts, 1980), Lee and Pitt (1986) propose to deal with this zero censoring by relying on the 

use of virtual prices. They show that some vectors of positive virtual prices kiπ  exactly 

support these zero demands as long as the preference function (whether of the translog type or 

not) is strictly quasi-concave, continuous and strictly monotonic. Assuming that demands for 

the first L  goods are zero while strictly positive for the others, then these virtual prices are 

solutions of the following system of L  equations:  

( ) LleRpV lLl ,...,1/,,,0 1 =∂∂= + ππ  (7) 

It must be clear that these virtual prices are not simple calibrated parameters solving a squared 

system of L  equations and variables; they do appear in the demand functions of positively 

consumed goods.  

For instance, let’s adopt in the rest of this section a three good translog indirect utility 

function. If only good one is not purchased by consumer i  then we have the system:  
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The virtual price of good one not purchased by this consumer is defined by equation (8) and 

then appears in both numerators and denominators of equations (9) and (10) of the two other 

demands. This virtual price is by definition unobserved and must be treated as a variable to be 

estimated during the econometric procedure.  

One additional assumption made by Lee and Pitt to compute this likelihood function is that 

this virtual price is lower than an “observed” market price:  
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ii p11 ≤π  (11) 

Then using the definition of the virtual price (equation 8) this allows them to restrict the 

domain of variation of the first error term. They are finally able to derive the likelihood 

function to be maximised under the assumption of the normality of all error terms.  

a. The simplifying case of homothetic demand system 

From these equations above it seems obvious that assuming homothetic preferences will ease 

the econometric estimation because the denominators reduce to –1. But even in this case this 

estimation is already challenging: the randomness of this virtual price and its non linear 

interaction with other structural parameters greatly complicate the expression of the likelihood 

function. We first detail this case in order to show the impossibilities we are then confronted 

with the non homothetic case.  

Let’s stay on this regime where only good one is not consumed. The ML estimation method 

consists in computing the likelihood of each observation, that is the joint density of the 

endogenous variables, and then maximising the sum of these likelihoods over all 

observations. In our case of three goods translog demand system, the additivity constraint 

allows taking the two first goods into account. The likelihood of one observation is thus 

denoted )/,( 21 iii xwwl , ix  representing all the data we have for that observation. That 

likelihood is given by:  
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with the simplifying notation : ∑ 

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From the inequality restriction (11) on the virtual price, we then have iii Bew 111 0 −≥⇔= . 

Hence that likelihood is also given by: ( )iiiiiii xwBePxwwl /,)/,( 21121 −≤=  and can be 

computed in two alternative ways, i.e. conditional on the consumption of good 2 
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( ) )/(,/)/,( 221121 iiiiiiiii xwPxwBePxwwl −≤=  or conditional on the restriction on the first 

error term ( ) )/(,/)/,( 1111221 iiiiiiiiii xBePxBewPxwwl −≤−≤= . These two procedures 

reported in annex 1 give the same expression of the likelihood function:  
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with notations explained in this annex. We can derive “similar” likelihood functions for other 

regimes (depending on which goods are consumed or not) and then express the likelihood 

function to be maximised. We finally note that, for the derivation of this last expression, we 

use the parameters restriction given by the concavity condition.  

b. The unmanageable case of non homothetic demand system 

Our objective now is to show the computational difficulties to deal with this censoring and 

non homothetic demand system. The denominator in the demand (shares) equation is no 

longer a constant. The corresponding equations to (13) and (14) are now given by:  
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with the other simplifying notation ∑∑ 

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D ln1 β . We still have two ways to 

compute the likelihood expression of this regime. Let’s start with the conditional likelihood 

on good 2 consumption: ( ) )/(,/)/,( 221121 iiiiiiiii xwPxwBePxwwl −≤= . In that case we need 

to know the distribution of iw2  subject to the data. Combining (13’) and (14’) gives:  
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From this expression we see that we have a ratio of two normal distributions which are not 

centred, nor reduced. Accordingly we cannot know the distribution of this observation. By 

extension we are not able to write the likelihood function for that observation.  

Let’s move to the second strategy where ( ) )/(,/)/,( 1111221 iiiiiiiiii xBePxBewPxwwl −≤−≤= . 

From expression (16) and using appropriate notational changes, we can write:  
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Now the distribution of iw2  subject to the first error term and all other data is normal. We are 

thus interested in getting its expectation and variance. Let’s start with the expectation:  
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In this expression )/( 12 ii eeE  corresponds to the orthogonal projection of e2i on e1i, i.e. to the 

regression of  e2i on e1i : iii
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Its variance is given by  
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with ²)1²()/( 212 rseeV ii −=  

When computing the likelihood function we also need the square root of this variance (the 

standard deviation) which must be positive by definition. Unfortunately nothing ensures that 

the first bracket term in the variance expression ( iii e110 ββ + ) is strictly positive. It can be 

maintained positive by taking its absolute value but such mathematical device introduces in 

fine a discontinuity in the likelihood function. In general cases, solving this ML program is 

likely to fail. And we ignore here the computational issues associated to the concavity of the 

expenditure function and stay on a three good example!  
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4. The generalised maximum entropy approach with inequalities 

Golan et al. (1997) on a single equation case, then Golan et al. (2001) on an AI demand 

system propose another way to deal with zero-censoring. Instead of assuming normality of 

error terms as in the ML approach, they develop GME estimators which are robust to the 

specification of these error distributions. In a very general way, there are still a small number 

of GME applications, possibly because these estimators have no closed form solutions. We 

first briefly present this estimation method before turning to the development by Golan and 

co-authors to deal with censored demand system.  

a. The Generalised Maximum Entropy approach 

Let’s assume first that one wants to estimate a homothetic translog demand system given by 

equations (2) and (6). In a compact form, this system can be written as:  

εβ += XY  (21) 

In the GME literature, this relation is often refereed as the consistency condition. In order to 

define an entropy objective function, structural parameters β  as well as error terms ε  are 

first expressed in term of proper probabilities (p  and w , respectively). This requires the 

definition of support values for these structural parameters (Z ) and error terms ()V . GME 

estimators are then solution of the following maximization program:  

VwXZpXYts

wwpp

+=+=
−−
εβ/

ln.ln.max
 (22) 

Solving this extremum program does not lead to closed form solutions for the proper 

probabilities and thus to structural parameters and error terms. However Golan et al. (1996) 

show that this program can be expressed in terms of Lagrangian multipliers associated with 

the consistency condition (22) only. They are thus able to compute their asymptotic properties 

as with any other extremum estimators under standard assumptions. If a) error terms are 

independently and identically distributed with contemporaneous variance-covariance matrix 

Σ , b) explanatory variables are not correlated with error terms, c) the “square” matrix of 

explanatory variables is non singular and d) the set of probabilities which satisfy the 

consistency condition is non empty, then  

( )( )( )11,~ˆ −− ⊗Σ′ XIXN ββ  (23) 
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Accordingly, the assumptions a) and b) can be tested using the usual statistical tests (the 

Durbin Watson test for first-order autocorrelation or the Hausman test for the exogeneity of 

regressors). If, for example, the Durbin Watson test does not accept the null hypothesis of no 

first order correlation, then the extremum program (22) can easily be expanded in order to 

specify a first order autocorrelation of residuals. In the same vein, if the Hausman exogeneity 

test concludes to endogeneity of regressors, then the extremum program (22) can be expanded 

with instrumental variables. 

b. The censoring with the Generalised Maximum Entropy approach 

Proponents of the GME approach claim that the imposition of implicit/nonlinear/inequality 

constraints on parameters is easily done because the GME estimators are only implicitly 

defined as the solution of an optimisation program subject to constraints. This leads Golan et 

al. (2001) to estimate a censored AI demand system with the two following sets of equations:  

0)/log(.)log( >+++= ∑ kikiiik
l

liklkki wwhenePRpw βγα  (24) 

0)/log(.)log( =+++> ∑ kikiiik
l

liklkki wwhenePRpw βγα  (25) 

with iP  the translog price index.  

We have two major concerns with this approach.1 First the existence and role of virtual prices 

are not acknowledged and we do not really know why a consumer purchases or not one good 

(equation 25). Moreover positive demands are determined by their market prices as well as 

the market prices of non consumed goods (equation 24). This procedure is efficient only if 

one can observe these latter market prices and if they correspond to the true virtual prices. 

This second assumption is very unlikely to hold and the econometric problem can thus be 

viewed as an error of measurement issue.  

Second these authors conduct statistical tests on structural parameters using traditional 

formulae (equation 23). In fact, it appears that when they derive the properties of the censored 

GME estimators, in both papers inequalities are reduced to equalities (see equations A5 in 

Golan et al. (1997) and the appendix in Golan et al. (2001)). This may be explained as 

follows.  

                                                 
1 In addition to the fact that it also ignores concavity conditions, a fact which is unfortunately too common 

(Barnett, 2002).  
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The GME estimator is an extremum estimator where the constraints are represented by the 

consistency conditions. When forming the Lagrangian of this maximisation program, 

inequality constraints are premultiplied by Lagrangian multipliers and, without taking care, 

nothing ensures that the underlying constraints are equalities or inequalities. In other words, 

we are not able from the following program to know if theoretical constraints are binding or 

not:  

( ) ( )VwXZpYwwppXYwpL −−+−−= λλ ln.ln.,;,,  (26) 

where we simplify the notation by assuming proper probabilities on parameters and error 

terms. Newey and McFadden (1994) show that one necessary condition for these extremum 

estimators to be consistent and asymptotically normal is that:  

( )Σ→
∂

∂
,0

(.)
.

0

2/1 N
L

t
d

λλ
 (27) 

This derivative is simply the consistency condition which expectation does not equal zero 

when strict inequality does prevail. On the other hand, the bias is given by the expected 

difference between the “binding values” and the “latent values”:  

( )εβ EXYbias −−= 0  (28) 

Our understanding is that “censored” GME estimators as defined by these authors are biased. 

This view is consistent with the results of Monte Carlo experiments reported in Golan et al. 

(1997): GME estimates always have Mean Square Error (MSE) greater than their variances 

while ML estimates may be unbiased (depending on the experiments). Nevertheless, these 

same Monte Carlo experiments show that GME MSE are much lower than MSE from other 

estimators, implying that variance reduction obtained with the GME approach is a very 

important asset.  

 

5. Our solution: the virtual price concept with Generalised Maximum Entropy 

The virtual price approach of Lee and Pitt is nice from a theoretical point of view but 

empirically untractable with ML estimation technique. On the other hand, the no closed form 

GME solution is easy to implement and solve. We thus propose to combine these two 

branches of econometric literature.  

Like Lee and Pitt (1986), we start by recognizing that virtual prices are variables to be 

estimated simultaneously with other structural parameters. On the other hand, while Lee and 
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Pitt use substitution to reduce the dimension of the econometric program, we directly specify 

the virtual prices variables in our GME program like other structural parameters. So they are 

the product of proper probabilities and support values.  

Our full program to estimate a censored, non homothetic and globally regular translog 

demand system is given by (with m the index for support values):  

( )
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 (29) 

 

This program obviously deserves several remarks. The first two terms in the objective 

function and the first two lines of constraints are quite usual in GME programs: they 

correspond to the entropy on the α  structural parameters and the error terms and to their 

(proper) definitions respectively. The third term in the objective function is the entropy 

related to virtual prices and the third line of constraints their proper definitions. To simplify 

the notations, we introduce virtual prices for all goods, positively consumed or not. But we 

only maximise the entropy function when virtual prices are truly endogenous variables and 

not constrained to be equal to market prices when the consumption is strictly positive (hence 

the Kronecker delta). This is the purpose of the sixth line of complementary constraint which 

basically implies that the virtual price is equal to the market price when the good is positively 

consumed, is endogenously determined otherwise. The last term in the objective function 

corresponds to the entropy related to new variables introduced to impose the concavity 
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condition (and fourth line of constraints their proper definition). Basically this condition is 

maintained by adopting a Cholesky decomposition (Lau, 1978) (see the seventh line of 

constraint expressed in matrix form). Finally the fifth line of constraint is obviously the 

demand system and finally the last inequality ensures that the indirect utility function is an 

increasing function of the income. More generally the last two constraints ensure that the 

translog demand system is globally regular, hence that there exists only one system of virtual 

prices and finally that the maximisation program (29) is feasible and has one unique global 

optimum (van Soest and Kooreman, 1988).  

Without being ideal our solution offers several advantages compared to current approaches to 

deal with censored demand systems. First unlike the Lee and Pitt approach, analytical 

expressions of virtual prices are not needed to formulate the extremum maximisation 

program. Accordingly we are not constrained in the definition of our program to restrict 

ourselves to a very limited number of goods. Moreover we are not constrained by the flexible 

functional form used to represent preferences. On the other hand we must admit that this form 

must be globally regular, i.e. at every point, in order to ensure the existence of a solution and 

the translog is a very good candidate.  

Second our solution does not require knowing the market prices that prevail when the good is 

not consumed. On the contrary, the Lee and Pitt approach starts from the explicit assumption 

that virtual prices are lower than market prices. We admit that there are some cases 

(household surveys) where the econometrician is able to find good proxies for these market 

prices. There are also cases where adopting a market price is not trivial. For instance let’s 

assume that one country (say the US) is not importing a good from another one (say 

Germany) in a particular year and imports are non minor otherwise. Taking this particular 

year export price of the latter (Germany) to a third one (say the Netherlands) would imply that 

German production is homogeneous. However from the previous years we may observe that 

German export prices are differentiated by countries. In fact we have the possibility with our 

solution to capture the level of market prices when they exist. We can simply introduce this 

information when we define the upper bound of the support values ( kimzπ ).  

Third our solution allows specifying a demand system which is simultaneously zero-censored, 

non homothetic and globally regular. We thus stick with all properties of the micro economic 

theory of consumer behaviour. In fact the current literature on the econometric estimation of 

demand systems either focuses on the monotony property or on the concavity property of the 

underlying expenditure functions. Both issues are seldom acknowledged simultaneously. 
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However Barnett (2002) and Barnett and Pasupathy (2003) strongly argue for the joint 

consideration of these two properties because partial adoption of these properties may lead to 

false economic analysis.  

On the other hand our solution is not completely ideal in the sense that it is impossible to 

derive the asymptotic properties of our proposed estimators in the general non homothetic 

case. This is not really surprising because otherwise ML estimators would exist. Accordingly 

we only empirically determine the properties of these estimators by relying on bootstrapping 

techniques (Gallant and Golub, 1984). Finally we mention that in the simpler homothetic case 

it is possible to derive these properties as in the ML case (Newey and McFadden, 1994).  

 

6. Sampling experiments 

In the general case, our proposed estimator cannot be expressed in closed form and 

consequently its finite sample properties cannot be derived from direct evaluation of the 

estimator functional form. Accordingly we report in this section the results of Monte Carlo 

sampling experiments. We first compare it to the Lee and Pitt ML approach in a three good 

homothetic case and then move in a second step to a non homothetic case. We detail our 

databases beforehand.  

 

a. Data assumptions  

In order to generate our data, we first assume some true values for structural parameters. In 

the homothetic case these assumptions are:  

















−
−
−

=
7.0

2.0

1.0

α  and 
















−−
−−
−−

=
5.025.025.0

25.05.025.0

25.025.05.0

β .  

Then we generate series (1,000 points) for the log of prices and log of expenditure according 

to independent centred normal distributions with variances equal to 0.3. On the other hand we 

assume a correlation among error terms and simulate a joint normal distribution. In order to 

do that, we first draw from two independent centred normal distributions with variances 

equals to 0.1 and then generate, through a Cholesky decomposition, a third one assuming a 

correlation between the two former ones. The resulting joint distribution is the following:  
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With all these data, we then simply apply equation (2) to determine 1,000*3 shares. Some of 

them are negative: 30.6% for the first good, 17.7% for the second good while the third one is 

always consumed. This reduces the dimension of our problem when estimating with the ML 

approach. This does not prevent the comparison between the two approaches.  

For these cases when negative shares do appear, we define a new model where we impose that 

these shares are null. This allows computing virtual prices. In the same time the shares of 

positively consumed goods are modified with the “virtual price demand system” in order to 

fully satisfy theoretical conditions. During this process we constrain the marginal utility of 

income to be positive. We end up with a dataset containing 1,000 theoretically consistent 

observations of a three good system with some zeros. In that case we have information on the 

market prices as well as on the virtual prices. The purpose of the econometric estimation is to 

retrieve the latter ones as well as the structural parameters.  

In the non homothetic case, we only modify the matrix of β  structural parameters while all 

other assumptions are maintained. This matrix is now:  

















−−
−−

−−
=

5.03.025.0

3.05.01.0

25.01.03.0

β  

With these parameters, income elasticities are respectively equal to 0.5, 1 and 1.5. The 

proportion of negative demand shares is equal to 22.7% for the first good, 16% for the second 

good and still none for the third good. We proceed as above to determine the virtual prices 

and the final non homothetic dataset. 

 

b. Econometric results on the homothetic case 

When one wants to perform GME econometrics, it is necessary to define the number and the 

level of support values for all econometric variables. This possibility is widely discussed in 

the GME literature (Golan et al., 1996). Proponents of this approach argue that this is a means 

for the econometrician to incorporate the sample information. Opponents claim that this 

allows the econometrician to bias the results. In the experiments reported below we always 

assume that there are three symmetric support values for each econometric variable. We 
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define very large support values so as to not introduce a priori information on structural 

parameters, i.e. –10, 0 and 10. The support values of the error terms are given by -1, 0 and 1. 

On the other hand we assume like Lee and Pitt that virtual prices cannot be higher than market 

prices when defining their support values. We also assume that these virtual prices cannot be 

negative (the lower bound of log of price is –2).  

The GME estimation is performed with the GAMS software. The ML one has been conducted 

on the SAS software because GAMS does not allow solving integrals with endogenous 

bounds.  

In both methods, the program is highly non linear. Arndt et al. (1999) advocate using simple 

LS results to give starting values. In a first trial, we choose as starting point the true values of 

parameter. The results we obtained are presented in table 1.  

 

Table 1: Comparison of GME and ML estimates on a homothetic demand system with 

good starting values 

 Beta alpha r s1 s2 R2 Est kiπ / 

True kiπ  

Est kiπ / 

kip  

Initial 
values 

0.50 
-0.25 
-0.25 

-0.25 
0.50 

-0.25 

-0.25 
-0.25 
0.50 

 

-0.10 
-0.20 
-0.70 

 
0.565 

 
0.084 

 
0.084 

 
 

  

GME 
estim 

0.430 
-0.191 
-0.238 

 

-0.192 
0.434 

-0.242 

-0.238 
-0.242 
0.481 

-0.114 
-0.204 
-0.682 

 
0.304 

 
0.073 

 
0.106 

0.729 
0.602 
0.434 

71.31% 
4.82% 

-29.9% 
-23.0% 

ML 
estim 

0.473 
-0.221 
-0.252 

 

-0.221 
0.507 

-0.286 
 

-0.252 
-0.285 
0.538 

-0.091 
-0.187 
-0.722 

 

 
0.588 

 
0.096 

 
0.125 

0.727 
0.619 
0.434 

64.27% 
-39.23% 

-38.9% 
-369.9% 

 

Structural parameters estimated through ML seem to be a bit closer to true parameters than 

those estimated through GME. However virtual prices estimated by GME (notably good 2) 

are closer to “true” virtual prices than those estimated by ML. This probably explains why the 

qualities of adjustment for all equations are nearly the same for both methods.  

We secondly adopt different starting values: two interesting empirical results appear. Firstly 

the ML approach does not always lead to a solution while we always get one with the GME 

one. Secondly the econometric results obtained with the GME are rather independent of these 

initial values. This indicates a good stability of the method. For instance table 2 reports the 
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GME econometric results with new starting values while the ML program fails to converge. 

Our tentative interpretation of these results is the following. The concavity condition is 

explicitly introduced as a firm constraint in the GME program (see program 29) while only 

implicit in the derivation of the likelihood expression. Accordingly, when solving the GME 

program the optimisation procedure first searches for a feasible region of structural 

parameters and virtual prices, and then maximises the objective function. On the other hand, 

the ML program does both simultaneously and may have difficulties between the optimisation 

of the likelihood function and the satisfaction of theoretical conditions.  

 

Table 2: GME estimation of a homothetic demand system with poor starting values 

 Beta Alpha r s1 s2 R2 Est kiπ / 

True kiπ  

Est kiπ / 

kip  

Initial 
values 

0.30 
-0.20 
-0.10 

-0.20 
0.40 

-0.20 

-0.20 
-0.20 
0.30 

 

-0.30 
-0.50 
-0.20 

 
0.10 

 
0.05 

 
0.02 

 
 

  

GME 
estim 

0.430 
-0.191 
-0.238 

 

-0.192 
0.434 

-0.242 

-0.238 
-0.242 
0.481 

-0.114 
-0.204 
-0.682 

 
0.304 

 
0.073 

 
0.106 

0.729 
0.602 
0.434 

71.31% 
4.82% 

-29.9% 
-23.0% 

 

c. Econometric results on the non homothetic case 

One great advantage offered by our solution is the possibility to estimate zero censored non 

homothetic demand system. Our estimation program in this case is more non linear than in the 

homothetic case. Accordingly we again test the sensitivity of the results to starting values. 

Results reported in table 3 show again a great stability of GME results with respect to these 

initial values.  
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Table 3: GME estimation of a non homothetic demand system with good and poor 

starting values 

 Beta alpha R2 Est kiπ / True kiπ  Est kiπ / kip  

Good Initial 
values 

0.30 
-0.10 
-0.25 

 

-0.10 
0.50 

-0.30 

-0.25 
-0.30 
0.50 

-0.10 
-0.20 
-0.70 

   

GME estim 0.368 
-0.077 
-0.191 

 

-0.077 
0.394 

-0.317 

-0.191 
-0.317 
0.508 

-0.114 
-0.206 
-0.679 

0.561 
0.598 
0.486 

-46.27% 
61.43% 

-15.30% 
-10.79% 

Poor Initial 
values 

0.40 
-0.10 
-0.10 

 

-0.10 
0.40 

-0.30 

-0.10 
-0.30 
0.20 

-0.30 
-0.50 
-0.20 

   

GME estim 0.268 
-0.077 
-0.191 

 

-0.077 
0.394 

-0.317 

-0.191 
-0.317 
0.508 

-0.114 
-0.206 
-0.679 

0.561 
0.598 
0.486 

-46.27% 
61.43% 

-15.30% 
-10.79% 

 

d. Empirical properties of estimators 

So far we only discuss the econometric results in terms of existence of solution, the quality of 

adjustment and the sensibility to starting values. We now focus on the precision of the 

estimates. As said earlier, delivering and/or computing the asymptotic properties of all 

estimators are challenging and we rely here on bootstrap inference techniques. 

Basically the bootstrap is a re-sampling procedure which allows computing the MSE for each 

method. In a nutshell, the principle of this procedure is as follows in a simple case as equation 

(22). Let B be the number of bootstrap samples. We then apply B times the following two 

steps. First we draw randomly and with replacement from an initial sample (Y,X) a sample of 

the same dimension noted (Y*, X*). Second we estimate the model on this sample and get 

estimated parameters *β . Once this is done, we are able to compute the mean and variance 

of *β  on the B bootstrap samples as well as the MSE criterion. It is defined as the sum of the 

variance and the squared bias:  

( ) ( )2
* *MSE Varβ β β= − +  

As expected, results reported in table 4 show that GME and ML econometric results converge 

on the homothetic case in terms of MSE. The MSE obtained with the non homothetic case are 

not directly comparable to homothetic ones but still we do not observe radical changes. This 

gives one first empirical support to our solution.  
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Table 4: Properties of GME and ML estimators: results from bootstrapping 

 

7. Concluding comments 

The econometric estimation of zero censored demand system faces major difficulties. The 

virtual price approach pioneered by Lee and Pitt (1986) in an econometric framework is 

theoretically consistent but empirically feasible only for homothetic demand system, and even 

may fail to converge depending on initial conditions. In this paper we propose to expand on 

this approach by relying on the generalized maximum entropy concept instead of the 

Maximum Likelihood paradigm. The former is robust to the error distribution while the latter 

must stick with a normality assumption. Accordingly the econometric specification of 

censored demand systems with virtual prices is made easier even with non preferences 

defined over several goods. Illustrative Monte Carlo sampling results show its relative 

performance.  

There are several extensions to this paper that must be contemplated before getting definitive 

statements on this long standing issue. In the Monte Carlo experiments reported in this paper 

we only consider three good demand systems. We also try a five good demand system with 

the GME approach and we face no econometric difficulties. Nevertheless it will be interesting 

to test the method in more contrasting cases with larger shares of zero points for instance. The 

difficulty we had to deal with up to now is not to estimate but rather to simulate in the very 

first step a consistent dataset. In particular our experience shows that it is crucial to maintain 

the often overlooked condition that marginal utility of income must be positive. In that respect 

we fully agree with Barnett (2002) that complete respect of all theoretical conditions is very 

crucial.  

Alpha Alpha
-0.1146323 0.4301149 -0.1916621 -0.2384528 0.000229893 0.005167169 0.003393633 0.000398568

Linear yes GME -0.2035714 -0.1916621 0.433816 -0.2421539 2.15688E-05 0.003393633 0.004252037 0.000235189
-0.6817963 -0.2384528 -0.2421539 0.4806067 0.000357447 0.000398568 0.000235189 0.000806596
-0.090787 0.4728779 -0.221023 -0.251855 9.25639E-05 0.000805946 0.00085358 0.000124002

Linear yes ML -0.186579 -0.221023 0.5069408 -0.285918 0.000195076 0.00085358 0.002588352 0.001364752
-0.722633 -0.251855 -0.285918 0.5377726 0.000545003 0.000124002 0.001364752 0.001671818
-0.1146323 0.430115 -0.1916622 -0.2384528 0.000229893 0.005167169 0.003393633 0.000398568

Linear no GME -0.2035714 -0.1916622 0.4338161 -0.242154 2.15688E-05 0.003393633 0.004252037 0.000235189
-0.6817963 -0.2384528 -0.242154 0.4806068 0.000357447 0.000398568 0.000235189 0.000806596
-0.090794 0.4728756 -0.22101 -0.251865 8.34666E-05 0.00080618 0.000853747 0.000124004

Linear no ML -0.186585 -0.22101 0.5069351 -0.285925 0.000181549 0.000853747 0.00017205 0.001364544
-0.722622 -0.251865 -0.285925 0.5377899 0.000511258 0.000124004 0.001364544 0.001671619
-0.1142763 0.2684858 -0.0770935 -0.1913923 0.000218359 0.054206738 0.029875726 0.003746322

Non Linear yes GME -0.2060647 -0.0770935 0.3942379 -0.3171444 4.42671E-05 0.029875726 0.010940225 0.004910412
-0.6796589 -0.1913923 -0.3171444 0.5085368 0.000439538 0.003746322 0.004910412 0.000417259
-0.1142763 0.2684858 -0.0770935 -0.1913923 0.000218359 0.054206738 0.029875726 0.003746322

Non Linear no GME -0.2060647 -0.0770935 0.3942379 -0.3171444 4.42671E-05 0.029875726 0.010940225 0.004910412
-0.6796589 -0.1913923 -0.3171444 0.5085368 0.000439538 0.003746322 0.004910412 0.000417259

Estimated parameters MSE = bias²+variance
Beta Beta

Form
Initial values 
= true values

Méthod
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Another extension is to confront this approach to real datasets and contrast it to other 

methods. Real datasets are always more difficult to analyse than built-ones due to endogeneity 

and/or multi-collinearity issues for instance. According to results reported by van Akkeren et 

al. (2002) we are quite confident that our approach will allow managing these cases but this is 

to be checked.  

Finally our approach allows estimating simultaneously and explicitly structural parameters 

and virtual prices. In the entropy objective function, one has the possibility to weigh one 

component relative to the others. For instance one may improve the prediction or the precision 

of the estimates depending on its own objective (Golan et al., 1996). It may be interesting in 

some cases to focus on the virtual prices and in other cases on the structural parameters. 

Additional works may explore deeper this possibility.  
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Annex 1: Derivation of the likelihood function when only good one is not consumed  

 

We have two possibilities to get this expression and explore both below.  

 

Solution 1: ( ) )/(,/)/,( 221121 iiiiiiiii xwPxwBePxwwl −≤=  

 

This likelihood expression implies to know the law of w2i subject to data:  
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Let: 
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which gives: iiiii eew 21102 −+= αα  

As a linear combination of normal distributions, w2i follows a normal law: 
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The density of this random variable is given by: 
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With ( )²,; σµyf  the cumulative distribution function of a univariate normal law with 

expectation µ  and variance ²σ  at point y . 
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Let’s come back to our likelihood: 
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Writing the expressions in terms of density functions of normal laws, we get:  
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