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Abstract We study a new parametric approach for particular hidden stochastic mod-
els. This method is based on contrast minimization and deconvolution and can be
applied, for example, for ecological and financial state space models. After proving
consistency and asymptotic normality of the estimation leading to asymptotic confi-
dence intervals, we provide a thorough numerical study, which compares most of the
classical methods that are used in practice (Quasi-Maximum Likelihood estimator,
Simulated Expectation Maximization Likelihood estimator and Bayesian estimators)
to estimate the Stochastic Volatility model. We prove that our estimator clearly outper-
forms the Maximum Likelihood Estimator in term of computing time, but also most
of the other methods. We also show that this contrast method is the most robust with
respect to non Gaussianity of the error and also does not need any tuning parameter.

Keywords Contrast function · Deconvolution · Parametric inference ·
Stochastic volatility

1 Introduction

This paper is concerned with the particular hidden stochastic model:

{
Yi = Xi + εi

Xi+1 = bφ0(Xi ) + ηi+1,
(1)
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1032 S. El Kolei

where (εi )i≥1 and (ηi )i≥1 are two independent sequences of independent and iden-
tically distributed (i.i.d) centered random variables with variance σ 2

ε and σ 2
0 . It is

assumed that the variance σ 2
ε is known. The terminology hidden comes from the

unobservable character of the process (Xi )i≥1 since the only available observations
are Y1, . . . , Yn .

The dynamics of the process Xi is described by a measurable function bφ0 which
depends on an unknown parameter φ0 and by a sequence of i.i.d centered random vari-
ables with unknown variance σ 2

0 . We denote by θ0 the vector of parameters governing
the process Xi and suppose that the model is correctly specified: that is, θ0 belongs to
the parameter space Θ ⊂ R

r , with r ∈ N
∗.

Inference in hidden Markov models is a real challenge and has been studied by
many authors (see Cappé et al. 2005a; Doucet et al. 2001; Robert et al. 2000). Chanda
provided in (1995) an asymptotically normal estimator for the vector of parameters θ0
by using modified Yule Walker equation but it assumes that the function bφ0 is linear in
φ0 and Xi , so the model (1) is reduced to an autoregressive model with measurement
error.

Recently, in Douc et al. (2011), the authors propose an efficient estimator of the
vector of parameters θ0 for nonlinear function bφ0 . They prove that their Maximisa-
tion Likelihood Estimator (MLE) is consistent and asymptotically normal. The main
difficulty with their approach comes from the unobservable character of the process
Xi making the calculus of the exact likelihood intractable in practice: the likelihood is
only available in the form of a multiple integral, so exact likelihood methods require
simulations and have therefore an intensive computational cost. In many case, the
MLE has to be approximated. A popular approach to approximate the MLE consists
in using Monte Carlo Markov Chain (MCMC) simulation techniques. Thanks to the
development of these methods, the MLE has known a huge progress and Bayesian esti-
mations have received more attention (see Smith and Roberts 1993). Another method
for performing the MLE consists in using the Expectation-Maximization (EM) algo-
rithm proposed by Dempster et al. (1977). Nevertheless, since Xi is unobservable,
this method requires to introduce a MCMC in the Expectation step. Although these
methods are used in practice, they are expensive from a computational point of view.

Some authors have proposed Sequential Monte Carlo algorithms (SMC) known as
Particles Filtering methods which allow to approximate the likelikood. The computa-
tional cost is reduced by a recursive construction. We refer to the book of Doucet et
al. (2001) and Cappé et al. (2005a) for a complete review of these methods.

Particle Markov Chain Monte Carlo (PMCMC) is another method for estimating the
model (1). This method combines Particles filtering methods and MCMC methods to
estimate the vector of parameters θ0. From a computational point of view, this approach
is expensive and we refer the reader to Andrieu et al. (2010) for more details. In Peters
et al. (2010), they propose an adaptive PMCMC method to estimate ecological hidden
stochastic models.

We propose here an approach based on M-estimation: It consists in the optimisation
of a well-chosen contrast function (see Van der Vaart 1998, chapter p. 41 for a partial
review) and deconvolution strategy. The deconvolution problem is encountered in
many statistical situations where the observations are collected with random errors.
In this approach, a method for estimating the parameter φ0 has been proposed by
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Parametric estimation of hidden stochastic model 1033

Comte and Taupin (2001). Their procedure of estimation is based on a modified least
squared minimization. In the same perspective, Dedecker et al. in (2011) propose also
the same procedure of estimation based on a weighted least squared estimation: Their
assumptions on the process Xi are less restrictive than those proposed by F. Comte
and M. Taupin and they provide consistent estimation of the parameter φ0 with a
parametric rate of convergence in a very general framework. Their general estimator
is based on the introduction of a kernel deconvolution density and depends on the
choice of a weight function.

The approach proposed here is different: it is not based on a weighted least squared
estimation so that the choice of the weight function is not encountered in this paper.
Moreover, it allows to estimate both the parameters φ0 and σ 2

0 . Our principle of esti-
mation relies on the Nadaraya–Watson strategy and is proposed by Comte et al. in
(2011) in a non parametric case to estimate the function bφ as a ratio of an estimate
of lθ = bφ fθ and an estimate of fθ , where fθ represents the invariant density of the
Xi . We propose to adapt their approach in a parametric context and suppose that the
form of the stationary density fθ0 is known up to some unknown parameter θ0. Our
work is purely parametric but we go further in this direction by proposing an analytical
expression of the asymptotic variance matrix Σ(θ̂n) which allows to construct confi-
dence interval. Furthermore, this approach is much less greedy from a computational
point of view than the MLE and its implementation is straighforward.

Applications: Applications include epidemiology, meterology, neuroscience, ecol-
ogy (see Ionides et al. 2011) and finance (see Johannes et al. 2009). For example, our
approach can be applied to the five ecological state space models described in Peters
et al. (2010). Although the scope of our method is general, we have chosen to focus
on the so-called discrete time Stochastic Volatility model (SV) introduced by Taylor
(2005). We also investigate the behavior of our method on the simpler autoregressive
process AR(1) with measurement noise which has been widely studied and on which
our method can be more easily understood and compared with other ones. Our proce-
dure allows to estimate the parameters of a large class of discrete Stochastic Volatility
models (ARCH-E model, Vasicek model, Merton model..), which is a real challenge
in financial application.

(i) Gaussian Autoregressive AR(1) with measurement noise: It has the following
form:

{
Yi+1 = Xi+1 + εi+1
Xi+1 = φ0 Xi + ηi+1,

(2)

where εi+1 and ηi+1 are two centered Gaussian random variables with variance σ 2
ε

assumed to be known and σ 2
0 assumed to be unknown. Additionally, we assume that

|φ0| < 1 which implies the stationary and ergodic property of the process Xi (see
Dedecker et al. 2007).

(ii) SV model: It is directly connected to the type of diffusion process used in
asset-pricing theory (see Melino and Turnbull 1990):

{
Ri+1 = exp

(
Xi+1

2

)
ξi+1,

Xi+1 = φ0 Xi + ηi+1,
(3)
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1034 S. El Kolei

where ξi+1 and ηi+1 are two centered Gaussian random variables with variance σ 2
ξ

assumed to be known and equal to one and σ 2
0 assumed to be unknown. The variables

Ri+1 represent the returns and Xi+1 is the log-volatility process.
By applying a log-transformation Yi+1 = log(R2

i+1) − E[log(ξ2
i+1)] and εi+1 =

log(ξ2
i+1) − E[log(ξ2

i+1)], the SV model is a particular version of (1). We assume
that |φ0| < 1 and we refer the reader to Genon-Catalot et al. (2000) for the mixing
properties of stochastic volatility models.

Most of the computational problems stem from the assumptions that the innova-
tion of the returns are Gaussian which translates into a logarithmic chi-square dis-
tribution when the model (12) is transformed in a linear state space model. Many
authors have ignored it in their implementation and many authors use some mixture
of Gaussian to approximate the log-chi-square density. For example, in the Quasi-
Maximum Likelihood (QML) method implemented by Jacquier et al. (2002) and in
the Simulated Expectation-Maximization Likelihood estimator proposed (SIEMLE)
by Kim et al. (1994) they used a mixture of Gaussian distribution to approximate
the log-chi-square distribution. Harvey (1994) used the Kalman filter to estimate the
likelihood of the transform state space model, hence the model was also assumed to
be Gaussian.

Organization of the paper: The first purpose of the paper is to present our estimator
and its statistical properties in Sect. 1.1: Under weak assumptions, we show that it is
a consistent and asymptotically normal estimator (Table 1).

The second purpose of this paper consists in comparing our contrast estimator
with different estimations: the QML, the SIEMLE and Bayesian estimators. Section
2 contains the numerical study: In Sect. 2.4 we give the parameter estimates and the
comparison with others ones for simulation data and Sect. 2.6 contains the study on
real data. We compare our contrast estimator with other ones on the SP&500 and
FTSE index. From a computational point of view, we show that the implementation
of our estimator is straightforward and it is faster than the SIEMLE (see Table 2 in
Sect. 2.5.1). Besides, we show that our estimator outperforms the QML and Bayesian
estimators.

Notations: We denote by: u∗(t) = ∫
eitx u(x)dx the Fourier transform of

the function u(x) and 〈u, v〉 = ∫
u(x)v(x)dx with vv = |v|2. We write ||u||2 =(∫ |u(x)|2dx

)1/2
the norm of u(x) on the space of functions L

2(R). By property of
the Fourier transform, we have (u∗)∗(x) = 2πu(−x) and 〈u1, u2〉 = 1

2π

〈
u∗

1, u∗
2

〉
. The

vector of the partial derivatives of f with respect to (w.r.t) θ is denoted by ∇θ f and
the Hessian matrix of f w.r.t θ is denoted by ∇2

θ f . The Euclidean norm matrix, that
is, the square root of the sum of the squares of all its elements will be written by
‖A‖. We denote by Yi the pair (Yi , Yi+1) and yi = (yi , yi+1) is a given realisation
of Yi .

In the following, P, E, Var and Cov denote respectively the probability Pθ0 ,
the expected value Eθ0 , the variance Varθ0 and the covariance Covθ0 when the
true parameter is θ0. Additionally, we write Pn (resp. P) the empirical expectation
(resp. theoretical), that is: for any stochastic variable X : Pn(X) = 1

n

∑n
i=1 Xi (resp.

P(X) = E[X ]).
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Parametric estimation of hidden stochastic model 1035

1.1 Procedure: contrast estimator

Hereafter, we propose explicit estimators of the parameter θ0. This estimator called the
contrast estimator is based on minimization of suitable functions of the observations
usually called “contrasts functions”. We refer the reader to Van der Vaart (1998) for a
general account on this notion. Furthermore, in this part, we use the contrast function
proposed by Comte et al. (2010), that is:

Pnmθ = 1

n

n∑
i=1

mθ (Yi ), (4)

with n the number of observations and:

mθ (yi ) : (θ, yi ) ∈ (Θ × R
2) 
→ mθ (yi ) = ||lθ ||22 − 2yi+1u∗

lθ (yi ),

where the function lθ and uv are given by:

lθ (x) = bφ(x) fθ (x) and uv(x) = 1

2π

v∗(−x)

f ∗
ε (x)

(5)

with fθ the invariant density of Xi .

Some assumptions. As our procedure relies on the Fourier deconvolution strategy,
in order to construct our estimator, we assume that the density of the noise εi , denoted
by fε, is fully known and belongs to L2(R), and for all x ∈ R f ∗

ε (x) �= 0. Furthermore,
we assume that the function lθ belongs to L1(R) ∩ L2(R). The function ulθ must be
integrable.

For the statistical study, the key assumption is that the process (Xi )i≥1 is stationary
and ergodic (see Genon-Catalot et al. 2000 for a definition).

Remark 1 In this paper we consider the situation in which the observation noise vari-
ance is known. This assumption which is not in general the case in practice is necessary
for the identifiability of the model and so is a standard assumption for state-space mod-
els given in (1).

There is some restrictions on the distribution of the observation and process errors in
the Nadaraya-Watson approach. It is known that the rate of convergence for estimating
the function lθ is related to the rate of decrease of f ∗

ε . In particular, the smoother fε, the
slower the rate of convergence for estimating is (The Gaussian, log-chi squared or
Cauchy distributions are super-smooth. The Laplace distribution is ordinary smooth).
This rate of convergence can be improved by assuming some additional regularity
conditions on lθ . There is a good discussion about this subject in Comte et al. (2010)
and Dedecker et al. (2011).

The procedure Let us explain the choice of the contrast function and how the
strategy of deconvolution works. Obviously, as the model (1) shows, the Yi are not
i.i.d. However, by assumption, they are stationary ergodic, so the convergence of Pnmθ
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1036 S. El Kolei

to Pmθ = E [mθ (Y1)] as n tends to the infinity is provided by the Ergodic Theorem.
Moreover, the limit E [mθ (Y1)] of the contrast function can be explicitly computed:

E [mθ (Y1)] = ‖lθ‖2
2 − 2E

[
Y2u∗

lθ (Y1)
]
.

By Eq. (1) and under the independence assumptions of the noise (ε2) and (η2), we
have:

E
[
Y2u∗

lθ (Y1)
] = E

[
bφ0(X1)u

∗
lθ (Y1)

]
.

Using Fubini’s Theorem and Eq. (1), we obtain:

E
[
bφ0(X1)u

∗
lθ (Y1)

] = E

[
bφ0(X1)

∫
eiY1zulθ (z)dz

]

= E

[
bφ0(X1)

∫
1

2π

1

f ∗
ε (z)

eiY1z(lθ (−z))∗dz

]

= 1

2π

∫
E

[
bφ0(X1)e

i(X1+ε1)z
] 1

f ∗
ε (z)

(lθ (−z))∗dz

= 1

2π

∫
E
[
eiε1z

]
f ∗
ε (z)

E

[
bφ0(X1)e

i X1z
]
(lθ (−z))∗dz

= 1

2π
E

[
bφ0(X1)

∫
ei X1z(lθ (−z))∗dz

]

= 1

2π
E
[
bφ0(X1)

(
(lθ (−X1))

∗)∗]
= E

[
bφ0(X1)lθ (X1)

]
.

=
∫

bφ0(x) fθ0(x)bφ(x) fθ (x)dx

= 〈
lθ , lθ0

〉
. (6)

Then,

E [mθ (Y1)] = ‖lθ‖2
2 − 2

〈
lθ , lθ0

〉
, (7)

= ∥∥lθ − lθ0

∥∥2
2 − ∥∥lθ0

∥∥2
2 . (8)

Under the uniqueness assumption (CT) given just later this quantity is minimal when
θ =θ0. Hence, the associated minimum-contrast estimators θ̂n is defined as any solution
of:

θ̂n = arg min
θ∈Θ

Pnmθ . (9)

Remark 2 One can see in the deconvolution strategy described in Eq. (6) that temporal
correlation in the observation or latent process errors can be authorized. The procedure
still be applicable but the covariance matrix Ω j−1(θ0) for the CLT has not an analytic
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Parametric estimation of hidden stochastic model 1037

expression in this case since the use of the Fourier deconvolution approach does not
work.

We refer the reader to Dedecker et al. (2007) for the proof that if Xi is an ergodic
process then the process Yi , which is the sum of an ergodic process with an i.i.d. noise,
is again stationary ergodic. Furthermore, by the definition of an ergodic process, if
Yi is an ergodic process then the couple Yi = (Yi , Yi+1) inherits the property (see
Genon-Catalot et al. 2000).

1.2 Asymptotic properties of the contrast estimator

Our proof holds under the following assumptions. For the reader convenience, we
denote by (E) [resp. (C) and (T)] the assumptions which serve us for the existence
(resp. Consistency and Central Limit Theorem). If the same assumption is needed for
two results, for example for the existence and the consistency, it is denoted by (EC).

(ECT): The parameter space Θ is a compact subset of R
r and θ0 is an element of

the interior of Θ .
(C): (Local dominance): E

[
supθ∈Θ

∣∣∣Y2u∗
lθ
(Y1)

∣∣∣] < ∞.

(CT): The application θ 
→ Pmθ admits an unique minimum and its Hessian
matrix denoted by Vθ is non-singular in θ0.
(T): (Regularity): We assume that the function lθ is twice continuously differen-
tiable w.r.t θ ∈ Θ for any x and measurable w.r.t x for all θ in Θ . Additionally,
each coordinate of ∇θ lθ and each coordinate of ∇2

θ lθ belong to L1(R) ∩ L2(R)

and each coordinate of u∇θ lθ and u∇2
θ lθ

have to be integrable as well.
(Moment condition): For some δ > 0 and for j ∈ {1, . . . , r}:

E

⎡
⎣
∣∣∣∣∣Y2u∗

∂lθ
∂θ j

(Y1)

∣∣∣∣∣
2+δ

⎤
⎦ < ∞.

(Hessian Local dominance): For some neighbourhood U of θ0 and for j, k ∈
{1, . . . , r}:

E

[
sup
θ∈U

∣∣∣∣∣Y2u∗
∂2lθ

∂θ j ∂θk

(Y1)

∣∣∣∣∣
]

< ∞.

Let us introduce the matrix:

Σ(θ) = V −1
θ Ω(θ)V −1′

θ with Ω(θ) = Ω0(θ) + 2
+∞∑
j=2

Ω j−1(θ),

where Ω0(θ) = Var (∇θmθ (Y1)) and Ω j−1(θ) = Cov
(∇θ mθ (Y1),∇θ mθ (Yj)

)
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1038 S. El Kolei

Theorem 1 Under our assumptions, let θ̂n be the minimum-contrast estimator defined
by (9). Then:

θ̂n −→ θ0 in probability as n → ∞.

Moreover, if Yi is geometrically ergodic (see Definition 1 in “Appendix A”),
then:

√
n(θ̂n − θ0) → N (0,Σ(θ0)) in law as n → ∞.

The following corollary gives an expression of the matrix Ω(θ0) and Vθ0 of
Theorem 1 for the practical implementation:

Corollary 1 Under our assumptions, the matrix Ω(θ0) is given by:

Ω(θ0) = Ω0(θ0) + 2
+∞∑
j=2

Ω j−1(θ0),

where:

Ω0(θ0)=4E

[
Y 2

2

(
u∗∇θ lθ (Y1)

)2]−4E
[
bφ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′
,

and, the covariance terms are given by:

Ω j−1(θ0) = 4
[
C̃ j−1 − E

[
bφ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′]
,

where C̃ j−1 = E

[
bφ0(X1) (∇θ lθ (X1))

(
bφ0(X j )∇θ lθ (X j )

)′]
and the differential ∇θ lθ

is taken at point θ = θ0.
Furthermore, the Hessian matrix Vθ0 is given by:

([
Vθ0

]
j,k

)
1≤ j,k≤r

= 2

(〈
∂lθ
∂θk

,
∂lθ
∂θ j

〉)
j,k

at point θ = θ0.

Let us now state the strategy of the proof, the full proof is given in “Appendix B”.
Clearly, the proof of Theorem 1 relies on M-estimators properties and on the decon-
volution strategy. The existence of our estimator follows from regularity properties
of the function lθ and compactness argument of the parameter space, it is explained
in “Appendix B.1”. The key of the proof consists in proving the asymptotic proper-
ties of our estimator. This is done by splitting the proof into two parts: we first give
the consistency result in “Appendix B.2” and then give the asymptotic normality in
“Appendix B.3”. Let us introduce the principal arguments:

The main idea for proving the consistency of a M-estimator comes from the follow-
ing observation: if Pnmθ converges to Pmθ in probability, and if the true parameter
solves the limit minimization problem, then, the limit of the argminimum θ̂n is θ0. By
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Parametric estimation of hidden stochastic model 1039

using an argument of uniform convergence in probability and by compactness of the
parameter space, we show that the argminimum of the limit is the limit of the argmini-
mum. A standard method to prove the uniform convergence is to use the Uniform Law
of Large Numbers (see Lemma 1 in “Appendix A”). Combining these arguments with
the dominance argument (C) give the consistency of our estimator, and then, the first
part of Theorem 1.

The asymptotic normality follows essentially from Central Limit Theorem for a
mixing process (see Jones 2004). Thanks to the consistency, the proof is based on
a moment condition of the Jacobian vector of the function mθ (y) and on a local
dominance condition of its Hessian matrix. To refer to likelihood results, one can see
these assumptions as a moment condition of the score function and a local dominance
condition of the Hessian.

2 Applications

2.1 Contrast estimator for the Gaussian AR(1) model with measurement noise

Consider the following autoregressive process AR(1) with measurement noise:

{
Yi = Xi + εi

Xi+1 = φ0 Xi + ηi+1,
(10)

The noises εi and ηi are supposed to be centered Gaussian randoms with variance
respectively σ 2

ε and σ 2
0 . We assume that σ 2

ε is known. Here, the unknown vector of
parameters is θ0 = (φ0, σ

2
0 ) and for stationary and ergodic properties of the process

Xi , we assume that the parameter φ0 satisfies |φ0| < 1 (see Dedecker et al. 2007). The
functions bφ and lθ are defined by:

bφ(x) : (x, θ) ∈ (R × Θ) 
→ bφ(x) = φx,

lθ (x) : (x, θ) ∈ (R × Θ) 
→ lθ (x) = bφ(x) fθ (x) = φ√
2πγ 2

x exp

(
− 1

2γ 2 x2
)

,

where γ 2 = σ 2

1−φ2 . The vector of parameter θ belongs to the compact subset Θ given by

Θ = [−1+r; 1−r ]×[σ 2
min; σ 2

max ] with σ 2
min ≥ σ 2

ε +r where r, r , σ 2
min and σ 2

max are
positive real constants. We consider this subset since by stationary of Xi , the parameter
|φ| < 1 and by construction the function u∗

lθ
is well defined for σ 2 > σ 2

ε (1−φ2) with

φ ∈ [−1 + r; 1 − r ] which is implied by σ 2 > σ 2
ε . The contrast estimator defined in

(1.1) has the following form:

θ̂n = arg min
θ∈Θ

⎧⎨
⎩

φ2γ

4
√

π
−
√

2

π

φγ 2

n(γ 2 − σ 2
ε )3/2

n∑
j=1

Y j+1Y j exp

(
−1

2

Y 2
j

(γ 2 − σ 2
ε )

)⎫⎬
⎭
(11)
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1040 S. El Kolei

with n the number of observations. Theorem 1 applies for θ0 = (0.7, 0.3) and the
corresponding result for the Gaussian AR(1) model is given in “Appendix C.1”. As
we already mentioned, Corollary 1 allows to compute confidence intervals: For all
i = 1, 2:

P

⎛
⎝θ̂n,i − z1−α/2

√
e′

iΣ(θ̂n)ei

n
≤ θ0,i ≤ θ̂n,i + z1−α/2

√
e′

iΣ(θ̂n)ei

n

⎞
⎠ → 1 − α,

as n → ∞ where z1−α/2 is the 1 − α/2 quantile of the Gaussian law, θ0,i is the i th
coordinate of θ0 and ei is the i th coordinate of the vector of the canonical basis of R

2.
The covariance matrix Σ(θ̂n) is computed in Lemma 3 in “Appendix C.1.3”.

2.2 Contrast estimator for the SV model

We consider the following SV model:

{
Ri+1 = exp

(
Xi+1

2

)
ξi+1,

Xi+1 = φ0 Xi + ηi+1,
(12)

The noises ξi+1 and ηi+1 are two centered Gaussian random variables with standard
variance σ 2

ξ assumed to be known and σ 2
0 . We assume that |φ0| < 1 and we refer the

reader to Genon-Catalot et al. (2000) for the mixing properties of this model.
By applying a log-transformation Yi+1 = log(R2

i+1) − E[log(ξ2
i+1)] and εi+1 =

log(ξ2
i+1) − E[log(ξ2

i+1)], the log-transform SV model is given by:

{
Yi+1 = Xi+1 + εi+1
Xi+1 = φ0 Xi + ηi+1,

(13)

The Fourier transform of the noise εi+1 is given by:

f ∗
ε (x) = 1√

π
2i xΓ

(
1

2
+ i x

)
e−iE x

where E = E[log(ξ2
i+1)] = −1.27 and Var [log(ξ2

i+1)]= σ 2
ε = π2

2 . Here, Γ represents
the gamma function given by:

Γ : u →
+∞∫
0

tu−1e−t dt ∀u ∈ C such that Re(u) > 0.

The vector of parameters θ = (φ, σ 2) belongs to the compact subset Θ given by
[−1 + r; 1 − r ] × [σ 2

min; σ 2
max ] with r, σ 2

min and σ 2
max positive real constants.

123



Parametric estimation of hidden stochastic model 1041

Our contrast estimator (1.1) is given by:

θ̂n = arg min
θ∈Θ

{
φ2γ

4
√

π
− 2

n

n∑
i=1

Yi+1u∗
lθ (Yi )

}
, (14)

with ulθ (y) = 1
2
√

π

⎛
⎝ −iφyγ 2 exp

(
−y2

2 γ 2
)

exp(−iE y)2iyΓ
(

1
2 +iy

)
⎞
⎠.

Theorem 1 applies for θ0 = (0.7, 0.3) and by Slutsky’s Lemma we also obtain
confidence intervals. We refer the reader to “Appendix C.2” for the proof.

2.3 Comparison with the others methods

2.3.1 QML estimator

For the SV model, the QML estimator, proposed independently by Harvey et al. 1994
is based on the log-transform model given in (13). Making as if the εi were Gaussian
in the log-transform of the SV model, the Kalman filter Kalman (1960) can be applied
in order to obtain the Quasi-Maximum Likelihood function of Y1:n = (Y1, . . . , Yn)

where n is the sample data length. For the AR(1) and the log-transform of the SV
model, the log-likelihood l(θ) is given by:

l(θ) = log fθ (Y1:n) = −n

2
log(2π) − 1

2

n∑
i=1

log Fi − 1

2

n∑
i=1

ν2
i

Fi
,

where νi is the one-step ahead prediction error for Yi , and Fi is the corresponding
mean square error. More precisely, the two quantities are given by:

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Fig. 1 Approximation of the log-chi-square density (red) by a Gaussian density with mean E = −1.27

and variance σ 2
ε = π2

2 (black) (color figure online)
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νi = (Yi − Ŷ −
i ) and Fi = Varθ [νi ] = P−

i + σ 2
ε ,

where Ŷ −
i = Eθ [Yi |Y1:i−1] is the one-step ahead prediction for Yi and P−

i =
Varθ [(Xi − X̂−

i )2] is the one-step ahead error variance for Xi .
Hence, the associated estimator of θ0 is defined as a solution of:

θ̂n = arg max
θ∈Θ

l(θ).

Note that this procedure can be inefficient: the method does not rely on the exact
likelihood of the Z1:n and approximating the true log-chi-square density by a normal
density can be rather inappropriate (see Fig. 1 below).

2.3.2 Particle filters estimators: bootstrap, APF and KSAPF

For the particle filters, the vector of parameters θ = (φ, σ 2) is supposed random
obeying the prior distribution assumed to be known. We propose to use the Kitagawa
and al. approach (2001 chapter 10 p. 189) in which the parameters are supposed time-
varying: θi+1 = θi + Gi+1 where Gi+1 is a centered Gaussian random with a variance
matrix Q supposed to be known. Now, we consider the augmented state vector X̃i+1 =
(Xi+1, θi+1)

′ where Xi+1 is the hidden state variable and θi+1 the unknown vector of
parameters. In this paragraph, we use the terminology of the particle filtering method,
that is: we call particle a random variable. The sequential particle estimation of the
vector X̃i+1 consists in a combined estimation of Xi+1 and θi+1. For initialisation the
distribution of X1

1 conditionally to θ1 is given by the stationary density fθ1 .
For the comparison with our contrast estimator (1.1), we use the three methods: the

Bootstrap filter, the Auxiliary Particle filter (APF) and the Kernel Smoothing Auxiliary
Particle filter (KSAPF). We refer the reader to Doucet et al. (2001), Pitt and Shephard
(1999) and Liu and West (2001) for a complete revue of these methods.

Remark 3 Let us underline some particularity of the combined state and parameters
estimation: For the Bootstrap and APF estimator, an important issue concerns the
choice of the parameter variance Q since the parameter is itself unobservable. If one
can choose an optimal variance Q the APF estimator could be a very good estimator
since with arbitrary variance the results are acceptable (see Table 4). In practice, Q is
chosen by an empirical optimization. The KSAPF is an enhanced version of the APF
and depends on a smooth factor 0 < h < 1 (see Liu and West 2001). Therefore, the
choice of h is another problem in practice.

A common approach to estimate the vector of parameters is to maximize the like-
lihood. Nevertheless, for state space models, the main difficulty with the Maximum
Likelihood Estimator (MLE) comes from the unobservable character of the state xt

making the calculus of the likelihood untractable in practice: the likelihood is only
available in the form of a multiple integral, so exact likelihood methods require simula-
tions and have therefore an intensive computational cost. In many cases, the MLE has

1 To avoid confusions between the true value θ0 and the initial value θ1 in the Bayesian algorithms, we
start the algorithms with i = 1.
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to be approximated. A popular approach to approximate it consists in using MCMC
simulation techniques (see Smith and Roberts 1993; Cappé et al. 2005b). Another
approach to approximate the likelihood consists in using particles filtering algorithms.
Recently, in Rue et al. (2009) the authors propose an approach of Integrated Nested
Laplace Approximations to obtain approximations of the likelihood.

In Chopin et al. (2011) the authors propose a sequential SMC2 algorithm which
allows an efficient approximation of the complete distribution p(x0:t , θ |y1:t ). Their
approach is an extension of the Iterated Batch Importance Sampling (IBIS) proposed
in Chopin (2002). In Andrieu et al. (2010) the authors develop a general algorithm
which is a MCMC algorithm that uses the particles filter to approximate the intractable
density pθ (y1:n) combined with a MCMC step that samples from p(θ |y1:n). They show
that their PMCMC algorithm admits as stationary density the distribution of interest
p(x0:t , θ |y1:t ). There exist others methods and we refer the reader to Johansen et al.
(2008); Poyiadjis et al. (2011) for more details.

2.4 A simulation study

For the AR(1) and SV model, we sample the trajectory of the Xi with the parameters
φ0 = 0.7 and σ 2

0 = 0.3. Conditionally to the trajectory, we sample the variables Yi

for i = 1 · · · n where n represents the number of observations. We take n = 1000 and
σ 2

ε = 0.1 for the two models. This means that we consider the following model:

{
Ri+1 = exp

(
Xi+1

2

)
ξ

β
i+1,

Xi+1 = φ0 Xi + ηi+1,

with β = 1√
5π

. In this case, the Fourier transform of εi+1 is given by: f ∗
ε (y) =

exp
(−i Ẽ y

) 2iβy√
π

Γ
( 1

2 + iβy
)

with Ẽ = βE (see “Appendix C.2”).

For the three methods, we take a number of particles M equal to 5000. Note that for
the Bayesian procedure (Bootstrap, APF and KSAPF), we need a prior on θ , and this
only at the first step. The prior for θ1 is taken to be the Uniform law and conditionally
to θ1 the distribution of X1 is the stationary law:

⎧⎨
⎩

p(θ1) = U (0.5, 0.9) × U (0.1, 0.4)

fθ1(X1) = N

(
0,

σ 2
1

1−φ2
1

)

We take h = 0.1 for the KSAPF and Q =
(

0.6.10−6 0
0 0.1.10−6

)
for the APF and

Bootstrap filter.

Remark 4 Note that, in practice, there is no constraint on the parameters for the contrast
function contrary to the particle filters where we take the stationary law for pθ (X0) and
the Uniform law around the true parameters. Hence, we bias favourably the particle
filters.
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2.5 Numerical results

In the numerical section we compare the different estimations: the QML estimator
defined in Sect. 2.3.1, the Bayesian estimators defined in Sect. 2.3.2 and our con-
trast estimator defined in Sect. 1.1. For the comparison of the computing time, we
also compare our contrast estimator with the SIEMLE proposed by Kim et al. [see
“Appendix D.1” and Kim and Shephard (1994) for more general details].

2.5.1 Computing time

From a theoretical point of view, the MLE is asymptotically efficient. However, in prac-
tice since the states (X1 . . . , Xn) are unobservable and the SV model is non Gaussian,
the likelihood is untractable. We have to use numerical methods to approximate it.
In this section, we illustrate the SIEMLE which consists in approximating the likeli-
hood and applying the Expectation-Maximisation algorithm introduced by Dempster
(1977) to find the parameter θ .

To illustrate the SIEMLE for the SV model, we run an estimator with a number
of observations n equal to 1000. Although the estimation is good the computing time
is very long compared with the others methods (see Tables 1 and 2). This result
illustrates the numerical complexity of the SIEMLE (see “Appendix D.1”). Therefore,
in the following, we only compare our contrast estimator with the QML and Bayesian
estimators. The results are illustrated by Fig. 1. We can see that our contrast estimator
is the fastest for the Gaussian AR(1) model. The QML is the most rapid for the SV

Table 1 Comparison of the computing time (CPU in seconds) and the MSE with respect to the number of
observations n = 200 up to 1,500 for the Gaussian AR(1) and the SV models

n SV AR(1)

CPU MSE CPU MSE

Contrast

200 4.2695 0.0425 0.032146 0.0411

300 5.1015 0.0453 0.022588 0.0398

400 7.0502 0.0239 0.028062 0.0374

500 6.9109 0.0175 0.026517 0.0306

750 11.8555 0.0117 0.031353 0.0218

1,000 20.4074 0.0078 0.056931 0.0133

1,500 29.3910 0.0061 0.08432 0.0091

Bootstrap filter

200 41.4780 0.0275 85.65 0.0225

300 57.5201 0.0261 103.7212 0.0211

400 67.9421 0.0248 155.0456 0.0199

500 107.9450 0.0228 169.5578 0.0187

750 138.0307 0.0186 241.1891 0.0154

1,000 192.2166 0.0174 318.5656 0.0133
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Table 1 continued

n SV AR(1)

CPU MSE CPU MSE

1,500 158.3680 0.0166 388.7098 0.0122

APF

200 19.4471 0.0209 49.6784 0.0138

300 39.2457 0.0182 69.3421 0.0125

400 46.9590 0.0123 86.9111 0.0118

500 54.5811 0.0189 108.9087 0.0112

750 91.5288 0.0171 166.3432 0.0100

1,000 105.1695 0.0163 189.5432 0.0087

1,500 122.1278 0.0159 326.7654 0.0074

KSAPF

200 32.8328 0.0131 55.039200 0.0121

300 47.4919 0.0129 90.691115 0.0116

400 58.3216 0.0118 107.767974 0.110

500 66.3554 0.0114 127.565273 0.102

750 76.4818 0.0103 173.311428 0.0086

1,000 93.8846 0.0093 246.09729 0.0073

1,500 151.7971 0.0084 376.8976 0.0068

QML

200 0.0268 0.172 0.0283 0.0444

300 0.0201 0.164 0.0312 0.0331

400 0.0532 0.153 0.0386 0.0336

500 0.0675 0.146 0.0476 0.0327

750 0.1046 0.132 0.0631 0.0311

1,000 0.0702 0.118 0.0712 0.0278

1,500 0.2148 0.110 0.0854 0.0253

The number of particles in Bayesian estimations is M = 5,000 particles and the number of estimators is
N = 100 for the MSE [see Eq. (15)]

Table 2 SIEMLE estimation for the SV model

φ0 σ 2
0 φ̂n σ̂ 2

n CPU (s)

0.7 0.3 0.667 0.2892 74,300

The number of observations is n = 1, 000 and the number of sweeps for the Gibbs sampler is M̃ = 100
(see “Appendix D.1”)

model since it assumes that the measurement errors are Gaussian but we show in Figs.
2, 3 and 4 that it is a biased estimator with large mean square error. For our algorithm,
for the Gaussian AR(1) model, the function u∗

lθ
has an explicit expression but for the

SV model, the function u∗
lθ

is approximated numerically since the Fourier transform
of the function ulθ has not an explicit form. This explains why our algorithm is slower

123



1046 S. El Kolei

on the SV model than on the Gaussian AR(1) model.2 In spite of this approximation,
our contrast estimator is fast and its implementation is straightforward.

2.5.2 Parameter estimates

For the AR(1) Gaussian model, we run N = 1,000 estimates for each method (QML,
APF, KSAPF and Bootsrap filter) and N = 500 for the SV model. The number of
observations n is equal to 1,000 for the two models.
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Contrast Estimator APF Estimator KSAPF EstimatorBootstrap Filter Estimator QML Estimator

Contrast Estimator APF Estimator KSAPF EstimatorBootstrap Filter Estimator QML Estimator

Fig. 2 Boxplot of φ. True value: φ0 = 0.7. Top panel Gaussian AR(1) model. Bottom panel SV model

2 We use a quadrature method implemented in Matlab to approximate the Fourier transform of ulθ (y). One
can also use the FFT method and we expect that the contrast estimator will be more rapid in this case.
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Fig. 3 Boxplot of σ 2. True value: σ 2
0 = 0.3. Left Gaussian AR(1) model. Right SV model

In order to compare with others the performance of our estimator, we compute for
each method the Mean Square Error (MSE) defined by:

M SE = 1

N

⎛
⎝ N∑

j=1

(φ̂ j − φ0)
2 + (σ̂ 2

j − σ 2
0 )2

⎞
⎠ , (15)

We illustrate by boxplots the different estimates (see Figs. 2, 3). We also illustrate
in Fig. 4 the MSE for each estimator computed by Eq. (15). We can see that, for the
parameter φ0, the QML estimator is better for the Gaussian AR(1) model than for
the SV model (see Fig. 2). Indeed, the Gaussianity assumption is wrong for the SV
model. Moreover, the estimate of σ 2

0 by QML is very bad for the two models (see
Fig. 3) and its corresponding boxplots have the largest dispersion meaning that the
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Fig. 4 MSE computed by Eq. (15). Top panel Gaussian AR(1) model. Bottom panel SV model

QML method is not very stable. The Bootstrap, APF and KSAPF have also a large
dispersion of their boxplots, in particular for the parameter φ0 (see Fig. 2). Besides,
the Booststrap filter is less efficient than the APF and KSAPF. For the Gaussian and
SV model, the boxplots of our contrast estimator show that our estimator is the most
stable with respect to φ0 and we obtain similar results for σ 2

0 . The MSE is better for
the SV model and the smallest for our contrast estimator.

2.5.3 Confidence interval of the contrast estimator

To illustrate the statistical properties of our contrast estimator, we compute for each
model the confidence intervals computed with the confidence level 1−α equal to 0.95
for N = 1 estimator and the coverages for N = 1,000 with respect to the number
of observations. The coverage corresponds to the number of times for which the true
parameter θ0,i , i = 1, 2 belongs to the confidence interval. The results are illustrated
by the Figs. 5, 6 and 7: for the Gaussian and SV models, the coverage converges to 95 %
for a small number of observations. As expected, the confidence interval decreases
with the number of observations. Note that of course a MLE confidence interval would
be smaller since the MLE is efficient but the corresponding computing time would be
huge.
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Fig. 5 Coverage with respect to the number of observations n = 100 up to 5,000 for N = 1,000 estimators.
Top panel Gaussian AR(1) model. Bottom panel SV model (color figure online)

Fig. 6 Confidence interval for the parameter φ0 with respect to the number of observations n = 100 up to
5,000 for N = 1 estimator. Top panel Gaussian AR(1) model. Bottom panel SV model
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Fig. 7 Confidence interval for the parameter σ 2
0 with respect to the number of observations n = 100 up to

5,000 for N = 1 estimator. Top panel Gaussian AR(1) model. Bottom panel SV model

2.6 Application to real data

The data consist of daily observations on FTSE stock price index and S&P500 stock
price index. The series taken in boursorama.com are closing prices from January, 3,
2004 to January, 2,2007 for the FTSE and S&P500 leaving a sample of 759 observa-
tions for the two series.

The daily prices Si are transformed into compounded rates returns centered around
their sample mean c for self-normalization (see Mathieu and Schotman 1998; Ghysels
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Fig. 8 Top left panel Graph of Yi = FTSE. Top right panel Graph of Yi = SP500. Bottom left panel
Autocorrelation of Yi = FTSE. Bottom right panel Autocorrelation of Yi = SP500
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et al. 1996) Ri = 100× log
(

Si
Si−1

)
−c. We want to model those data by the SV model

defined in (13) leading to:

Yi = log(R2
i ) − E[log(ξ2

i )]
= log(R2

i ) + 1.27

Those data are represented on Fig. [8].

2.6.1 Parameter estimates

In the empirical analysis, we compare the QML, the Bootstrap filter, the APF and
the KSAPF estimators. The last one is our contrast estimator. The variance of the
measurement noise is σ 2

ε = π2

2 , that is β is equal to 1 (see Sect. 2.4). Table 3 sum-
marises the parameter estimates and the computing time for the five methods. For
initialization of the Bayesian procedure, we take the Uniform law for the parameters
p(θ1) = U (0.4, 0.95) × U (0.1, 0.5) and the stationary law for the log-volatility

process X1, i.e, fθ1(X1) = N

(
0,

σ 2
1

1−φ2
1

)
.

The estimates of φ are in full accordance with results reported in previous studies of
SV models. This parameter is in general close to 1 which implies persistent logarithmic
volatility data. We compute the corresponding confidence intervals at level 5 % (see
Table 4). For the SP500 and the FTSE, note that the Bootstrap filter and the QML
are not in the confidence interval for the two parameters φ and σ 2. These results are
consistent with the simulations where we showed that both methods were biased for
the SV model (see Sect. 2.5.2). Note also that as expected the computing time for the
QML is the shortest because it assumes Gaussianity which is probably not the case

Table 3 Parameter estimates: n = 1,000 and the number of particles M = 5,000 for the particle filters

Index FTSE SP500

φ̂n σ̂ 2
n CPU φ̂n σ̂ 2

n CPU

Contrast 0.69 0.27 26 0.78 0.13 38

Bootstrap filter 0.91 0.15 204 0.830 0.247 214

APF 0.693 0.29 169 0.734 0.108 182

KSAPF 0.697 0.29 152 0.80 0.12 175

QML 0.649 0.08 0.07 0.895 0.257 0.1

The CPU is in seconds

Table 4 Confidence interval at
level 5 %

Index Confidence interval

φ σ 2

FTSE [ 0.6627; 0.7173] [0.1771; 0.3629]

SP500 [ 0.7086; 0.8514] [ 0.0278; 0.2322]

123



1052 S. El Kolei

here. Except of QML, the contrast is the fastest method. The results are presented in
Table 3 below.

2.7 Summary and conclusions

In this paper we propose a new method to estimate an hidden stochastic model on the
form (1). This method is based on the deconvolution strategy and leads to a consistent
and asymptotically normal estimator. We empirically study the performance of our
estimator for the Gaussian AR(1) model and SV model and we are able to construct a
confidence interval (see Figs. 6, 7). As the boxplots [2] and [3] show, only the Contrast,
the APF, and the KSAPF estimators are comparable. Indeed the QML and the Bootstrap
Filter estimators are biased and their MSE are bad, and in particular, the QML method
is the worst estimator (see Fig. 4). One can see that the QML estimator proposed by
Harvey et al. is not suitable for the SV model because the approximation of the log-chi-
square density by the Gaussian density is not robust (see Fig. 1). Furthermore, if we
compare the MSE of the three Sequential Bayesian estimation, the KSAPF estimator
is the best method. From a Bayesian point of view, it is known that the Bootstrap filter
is less efficient than the APF and KSAPF filter since by using the density transition
as the importance density, the propagation step of the particles will be made without
taking care the observations (see Doucet et al. 2001).

Among the three estimators (Contrast, APF, and KSAPF) which give good results
our estimator outperforms the others in a MSE aspect (see Fig. 4). Moreover, as we
already mentioned, in the combined state and parameters estimation the difficulties
are the choice of Q, h and the prior law since the results depend on these choices. In
the numerical section, we have used the stationary law for the variable X1 and this
choice yields good results but we expect that the behavior of the Bayesian estimation
will be worse for another prior. The implementation of the contrast estimator is the
easiest and it leads to confidence intervals with a larger variance than the SIEMLE but
at a smaller computing cost, in particular for the AR(1) Gaussian model (see Table 1).
Furthermore, the contrast estimator does not require an arbitrary choice of parameter
in practice.
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Appendix A: M-estimator

Definition 1 Geometrical ergodic process
Denote by Qn(x, .) the transition kernel at step n of a (discrete-time) stationary

Markov chain (Xn)n which started at x at time 0. That is, Qn(x, F) = P(Xn ∈
F |X0 = x). Let π denote the stationary law of Xn and let f be any measurable
function. We call mixing coefficients (βn)n the coefficients defined by, for each n:
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βn =
∫ [

sup
|| f ||∞≤1

∣∣Qn(x, f ) − π( f )
∣∣
]

π(dx),

where π( f ) = ∫
f (y)π(dy). We say that a process is geometrically ergodic if the

decreasing of the sequence of the mixing coefficients (βn)n is geometrical, that is:

∃ 0 < η < 1, such that βn ≤ ηn .

The following results are the main tools for the proof of Theorem 1.
Consider the following quantities:

Pnhθ = 1

n

n∑
i=1

hθ (Yi ); Pn Sθ = 1

n

n∑
i=1

∇θ hθ (Yi ) and Pn Hθ = 1

n

n∑
i=1

∇2
θ hθ (Yi )

where hθ (y) is real function from Θ × Y with value in R.

Lemma 1 Uniform Law of Large Numbers (ULLN) (see Newey and McFadden 1994
for the proof).

Let (Yi ) be an ergodic stationary process and suppose that:

1. hθ (y) is continuous in θ for all y and measurable in y for all θ in the compact
subset Θ .

2. There exists a function s(y)(called the dominating function) such that |hθ (y)| ≤
s(y) for all θ ∈ Θ and E[s(Y1)] < ∞. Then:

sup
θ∈Θ

|Pnhθ − Phθ | → 0 in probability as n → ∞.

Moreover, Phθ is a continuous function of θ .

Proposition 1 (Proposition 7.8 p. 472 in Hayashi (2000). The proof is in Newey
(1987) Theorem 4.1.5.)

Suppose that:

1. θ0 is in the interior of Θ .
2. hθ (y) is twice continuously differentiable in θ for any y.
3. The Hessian matrix of the application θ 
→ Phθ is non-singular.
4.

√
nPn Sθ → N (0,Ω(θ0)) in law as n → ∞, with Ω(θ0) a positive definite matrix.

5. Local dominance on the Hessian: for some neighbourhood U of θ0:

E

[
sup
θ∈U

∥∥∥∇2
θ hθ (Y1)

∥∥∥
]

< ∞,

so that, for any consistent estimator θ̂ of θ0 we have: Pn H
θ̂

→ E[∇2
θ hθ (Y1)] in

probability as n → ∞.
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Then, θ̂ is asymptotically normal with asymptotic covariance matrix given by:

Σ(θ0) = E[∇2
θ hθ (Y1)]−1Ω(θ0)E[∇2

θ hθ (Y1)]−1

where the differential ∇2
θ hθ (Y1) is taken at point θ = θ0.

Proposition 2 (The proof is in Jones 2004)
Let Yi be an ergodic stationary Markov chain and let g: Y → R a borelian

function. Suppose that Yi is geometrically ergodic and E
[|g(Y1)|2+δ

]
< ∞ for some

δ > 0. Then, when n → ∞,

√
n(Png − Pg) → N (0, σ 2

g ) in law,

where σ 2
g := V ar [(g(Y1)] + 2

∑∞
j=1 Cov

(
g(Y1), g(Y j )

)
< ∞.

Appendix B: Proofs of theorem 1

For the reader convenience we split the proof of Theorem 1 into three parts: in Sect.
2.7, we give the proof of the existence of our contrast estimator defined in (1.1). In
Sect. 2.7, we prove the consistency, that is, the first part of Theorem 1. Then, we
prove the asymptotic normality of our estimator in Sect. 2.7, that is, the second part
of Theorem 1. The Sect. 2.7 is devoted to Corollary 1. Finally, in Sect. 2.7 we prove
that Theorem 1 applies for the AR(1) and SV models.

B.1 Proof of the existence and measurability of the M-estimator

By assumption, the function θ 
→ ‖lθ‖2
2 is continuous. Moreover, l∗θ and then u∗

lθ
(x) =

1
2π

∫
eixy l∗θ (−y)

f ∗
ε (y)

dy are continuous w.r.t θ . In particular, the function mθ (yi ) = ‖lθ‖2
2 −

2yi+1u∗
lθ
(yi ) is continuous w.r.t θ . Hence, the function Pnmθ = 1

n

∑n
i=1 mθ (Yi ) is

continuous w.r.t θ belonging to the compact subset Θ . So, there exists θ̃ belongs to Θ

such that:

inf
θ∈Θ

Pnmθ = Pnm θ̃ .��

B.2 Proof of the consistency

By assumption lθ is continuous w.r.t θ for any x and measurable w.r.t x for all θ

which implies the continuity and the measurability of the function Pnmθ on the
compact subset Θ . Furthermore, the local dominance assumption (C) implies that
E
[
supθ∈Θ |mθ (Yi )|

]
is finite. Indeed,

|mθ (yi )| =
∣∣∣‖lθ‖2

2 − 2yi+1u∗
lθ (yi )

∣∣∣
≤ ‖lθ‖2

2 + 2
∣∣yi+1u∗

lθ (yi )
∣∣ .
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As ‖lθ‖2
2 is continuous on the compact subset Θ, supθ∈Θ ‖lθ‖2

2 is finite. Therefore,

E
[
supθ∈Θ |mθ (Yi )|

]
is finite if E

[
supθ∈Θ

∣∣∣Yi+1u∗
lθ
(Yi )

∣∣∣] is finite. Lemma ULLN 1

gives us the uniform convergence in probability of the contrast function: for any ε > 0:

lim
n→+∞ P

(
sup
θ∈Θ

|Pnmθ − Pmθ | ≤ ε

)
= 1.

Combining the uniform convergence with Theorem 2.1 p. 2121 chapter 36 in Hansen
and Horowitz (1997) yields the weak (convergence in probability) consistency of the
estimator. ��
Remark 5 In most applications, we do not know the bounds for the true parameter. So
the compactness assumption is sometimes restrictive, one can replace the compactness
assumption by: θ0 is an element of the interior of a convex parameter space Θ ⊂ R

r .
Then, under our assumptions except the compactness, the estimator is also consis-
tent. The proof is the same and the existence is proved by using convex optimization
arguments. One can refer to Hayashi (2000) for this discussion.

B.3 Proof of the asymptotic normality

The proof is based on the following Lemma:

Lemma 2 Suppose that the conditions of the consistency hold. Suppose further that:

1. Yi geometrically ergodic.
2. (Moment condition): for some δ > 0 and for each j ∈ {1, . . . , r} :

E

[∣∣∣∣∂mθ (Y1)

∂θ j

∣∣∣∣
2+δ

]
< ∞.

3. (Hessian Local condition): For some neighbourhood U of θ0 and for j, k ∈
{1, . . . , r} :

E

[
sup
θ∈U

∣∣∣∣∂
2mθ (Y1)

∂θ j∂θk

∣∣∣∣
]

< ∞.

Then, θ̂n defined in Eq. (9) is asymptotically normal with asymptotic covariance
matrix given by:

Σ(θ0) = V −1
θ0

Ω(θ0)V −1
θ0

where Vθ0 is the Hessian of the application Pmθ given in Eq. (7).

Proof The proof follows from Proposition 1 and Proposition 2 and by using the fact
that by assumption we have E[∇2

θ mθ (Y1)] = ∇2
θ E[mθ (Y1)]. ��

123



1056 S. El Kolei

It just remains to check that the conditions (2) and (3) of Lemma 2 hold under our
assumptions (T).

Moment condition: As the function lθ is twice continuously differentiable w.r.t θ ,
for all yi ∈ R

2, the application mθ (yi ) : θ ∈ Θ 
→ mθ (yi ) = ||lθ ||22 − 2yi+1u∗
lθ
(yi )

is twice continuously differentiable for all θ ∈ Θ and its first derivatives are given
by:

∇θ mθ (yi ) = ∇θ ||lθ ||22 − 2yi+1∇θu∗
lθ (yi ).

By assumption, for each j ∈ {1, . . . , r} , ∂lθ
∂θ j

∈ L1(R), therefore one can apply the
Lebesgue Derivation Theorem and Fubini’s Theorem to obtain:

∇θmθ (yi ) =
[
∇θ ||lθ ||22 − 2yi+1u∗∇θ lθ (yi )

]
. (16)

Then, for some δ > 0:

|∇θmθ (yi )|2+δ =
∣∣∣∇θ ||lθ ||22 − 2yi+1u∗∇θ lθ (yi )

∣∣∣2+δ

≤ C1

∣∣∣∇θ ||lθ ||22
∣∣∣2+δ + C2

∣∣yi+1u∗∇θ lθ (yi )
∣∣2+δ

, (17)

where C1 and C2 are two positive constants. By assumption, the function ||lθ ||22 is
twice continuously differentiable w.r.t θ . Hence, ∇θ ||lθ ||22 is continuous on the compact
subset Θ and the first term of Eq. (17) is finite. The second term is finite by the moment
assumption (T).

Hessian Local dominance: For j, k ∈ {1, . . . , r} , ∂2lθ
∂θ j ∂θk

∈ L1(R), the Lebesgue
Derivation Theorem gives:

∇2
θ mθ (yi ) = ∇2

θ ||lθ ||22 − 2yi+1u∗
∇2

θ lθ
(yi ),

and, for some neighbourhood U of θ0:

E

[
sup
θ∈U

∥∥∥∇2
θ mθ (Yi )

∥∥∥
]

≤ sup
θ∈U

∥∥∥∇2
θ ||lθ ||22

∥∥∥+ 2E

[
sup
θ∈U

∥∥∥Yi+1u∗
∇2

θ lθ
(Yi )

∥∥∥
]

.

The first term of the above equation is finite by continuity and by compactness argu-
ment. And, the second term is finite by the Hessian local dominance assumption (T).

��
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Parametric estimation of hidden stochastic model 1057

B.4 Proof of corollary 1

By replacing ∇θ mθ (Y1) by its expression (16), we have:

Ω0(θ) = Var
[
∇θ ||lθ ||22 − 2Y2u∗∇θ lθ (Y1)

]

= 4Var
[
Y2u∗∇θ lθ (Y1)

]
= 4

[
E

[
Y 2

2

(
u∗∇θ lθ (Y1)

) (
u∗∇θ lθ (Y1)

)′]− E
[
Y2u∗∇θ lθ (Y1)

]
E
[
Y2u∗∇θ lθ (Y1)

]′]
.

Furthermore, by Eq. (1) and by independence of the centered noise (ε2) and (η2), we
have:

E
[
Y2u∗∇θ lθ (Y1)

] = E
[
bφ0(X1)u

∗∇θ lθ (Y1)
]
.

Using Fubini’s Theorem and Eq. (1) we obtain:

E
[
bφ0(X1)u

∗∇θ lθ (Y1)
] = E

[
bφ0(X1)

∫
eiY1zu∇θ lθ (z)dz

]

= E

[
bφ0(X1)

∫
1

2π

1

f ∗
ε (z)

eiY1z(∇θ lθ )
∗(−z)dz

]

= 1

2π

∫
E

[
bφ0(X1)e

i(X1+ε1)z
] 1

f ∗
ε (z)

(∇θ lθ )
∗(−z)dz

= 1

2π

∫
E
[
eiε1z

]
f ∗
ε (z)

E

[
bφ0(X1)e

i X1z
]
(∇θ lθ )

∗(−z)dz

= 1

2π
E

[
bφ0(X1)

∫
ei X1z(∇θ lθ )

∗(−z)dz

]

= 1

2π
E
[
bφ0(X1)

(
(∇θ lθ )

∗(−X1)
)∗]

= E
[
bφ0(X1)∇θ lθ (X1)

]
. (18)

Hence,

Ω0(θ) = 4 (P2 − P1),

where

P1 = E
[
bφ0(X1)∇θ lθ (X1)

]
E
[
bφ0(X1)∇θ lθ (X1)

]′
,

P2 = E

[
Y 2

2

(
u∗∇θ lθ (Y1)

) (
u∗∇θ lθ (Y1)

)′]
.

Calculus of the covariance matrix of Corollary (1): By replacing (∇θmθ (Y1)) by
its expression (16) we have:
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1058 S. El Kolei

Ω j−1(θ) = Cov
(
∇θ ||lθ ||22 − 2Y2u∗∇θ lθ (Y1),∇θ ||lθ ||22 − 2Y j+1u∗∇θ lθ (Y j )

)
,

= 4Cov
(
Y2u∗∇θ lθ (Y1), Y j+1u∗∇θ lθ (Y j )

)
,

= 4
[
E
(
Y2u∗∇θ lθ (Y1)Y j+1u∗∇θ lθ (Y j )

)−E
(
Y2u∗∇θ lθ (Y1)

)
E
(
Y j+1u∗∇θ lθ (Y j )

)′]
.

By using Eq. (18) and the stationary property of the Yi , one can replace the second
term of the above equation by:

E
[
bφ0(X1)∇θ lθ (X1)

]
E
[
bφ0(X1)∇θ lθ (X1)

]′
.

Furthermore, by using Eq. (1) we obtain:

E
[
Y2Y j+1u∗∇θ lθ (Y1)u

∗∇θ lθ (Y j )
] = E

[
bφ0(X1)bφ0(X j )u

∗∇θ lθ (Y1)u
∗∇θ lθ (Y j )

]
+ E

[
bφ0(X1)

(
η j+1 + ε j+1

)
u∗∇θ lθ (Y1)u

∗∇θ lθ (Y j )
]
(19)

+ E
[
bφ0(X j ) (η2 + ε2) u∗∇θ lθ (Y1)u

∗∇θ lθ (Y j )
]

(20)

+ E
[
(η2 + ε2)

(
η j+1 + ε j+1

)
u∗∇θ lθ (Y1)u

∗∇θ lθ (Y j )
]
.

(21)

By independence of the centered noise, the term (19), (20) and (21) are equal to
zero. Now, if we use Fubini’s Theorem we have:

E
[
bφ0(X1)bφ0(X j )u

∗∇θ lθ (Y1)u
∗∇θ lθ (Y j )

]=E
[
bφ0(X1)bφ0(X j )∇θ lθ (X1)∇θ lθ (X j )

]
.

(22)

Hence, the covariance matrix is given by:

Ω j−1(θ) = 4
(
E

[
bφ0(X1)bφ0(X j ) (∇θ lθ (X1))

(∇θ lθ (X j )
)′]

−E
[
bφ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′)

= 4
(

C̃ j−1 − E
[
bφ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′)

= 4
(

C̃ j−1 − P1

)
.

Finally, we obtain: Ω(θ) = Ω0(θ) + 2
∑∞

j>1 Ω j−1(θ) with Ω0(θ) = 4 (P2 − P1)

and Ω j−1(θ) = 4
(
C̃ j−1 − P1

)
.

Expression of the Hessian matrix Vθ : We have:

Pmθ = ||lθ ||22 − 2
〈
lθ , lθ0

〉
. (23)
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Parametric estimation of hidden stochastic model 1059

For all θ in Θ , the application θ 
→ Pmθ is twice differentiable w.r.t θ on the
compact subset Θ . And for j ∈ {1, . . . , r}:

∂Pm

∂θ j
(θ) = 2

〈
∂lθ
∂θ j

, lθ

〉
− 2

〈
∂lθ
∂θ j

, lθ0

〉

= 2

〈
∂lθ
∂θ j

, lθ − lθ0

〉
,

= 0 at the point θ0,

and for j, k ∈ {1, . . . , r}:

∂2Pm

∂θ j∂θk
(θ) = 2

(〈
∂2lθ
∂θ jθk

, lθ − lθ0

〉
+
〈
∂lθ
∂θk

,
∂lθ
∂θ j

〉)
j,k

= 2

(〈
∂lθ
∂θk

,
∂lθ
∂θ j

〉)
j,k

at the point θ0.

Appendix C: Proof of the applications

C.1 The Gaussian AR(1) model with measurement noise

C.1.1 Contrast function

We have:

lθ (x) = 1√
2πγ 2

φx exp

(
− 1

2γ 2 x2
)

.

So that:

||lθ ||22 =
∫

|lθ (x)|2dx = φ2γ

4
√

π
,

and the Fourier Transform of lθ is given by:

l∗θ (y) =
∫

eiyx lθ (x)dx =
∫

eiyx 1√
2πγ 2

φx exp

(
− 1

2γ 2 x2
)

dx

= −iφE

[
iGeiyG

]
= −iφ

∂

∂y
E

[
eiyG

]
where G ∼ N (0, γ 2)

= −iφ
∂

∂y

[
e− y2

2 γ 2
]

= iφyγ 2e− y2

2 γ 2
.
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1060 S. El Kolei

As εi is a centered Gaussian noise with variance σ 2
ε , we have:

fε(x) = 1√
2πσ 2

ε

exp

(
− 1

2σ 2
ε

x2
)

and f ∗
ε (x) = exp

(
−1

2
x2σ 2

ε

)
.

Define:

ulθ (y) = 1

2π

l∗θ (−y)

f ∗
ε (y)

.

Then:

u∗
lθ (y) = 1

2π

∫
l∗θ (−x)

f ∗
ε (x)

eiyx dx = −i

2π
φγ 2

∫
xeiyx exp

(
x2

2
σ 2

ε

)
exp

(−x2

2
γ 2
)

dx

= −i

2π
φγ 2 1

(γ 2 − σ 2
ε )1/2

∫
xeiyx (γ 2 − σ 2

ε )1/2 exp

(
−1

2
x2(γ 2 − σ 2

ε )

)
dx

=− 1√
2π

φγ 2 1

(γ 2 − σ 2
ε )1/2 E

[
iGeiyG

]
=− 1√

2π
φγ 2 1

(γ 2 − σ 2
ε )1/2

∂

∂y
E

[
eiyG

]

= − 1√
2π

φγ 2 1

(γ 2 − σ 2
ε )1/2

∂

∂y

[
e
− y2

2(γ 2−σ2
ε )

]

= 1√
2π

φγ 2 1

(γ 2 − σ 2
ε )3/2 ye

− y2

2(γ 2−σ2
ε ) ,

where G ∼ N
(

0, 1
(γ 2−σ 2

ε )

)
. We deduce that the function mθ (yi ) is given by:

mθ (yi ) = ||lθ ||22 − 2yi+1u∗
lθ (yi )

= φ2γ

4
√

π
− 2yi yi+1

1√
2π

φγ 2 1

(γ 2 − σ 2
ε )3/2 exp

(
− y2

i

2(γ 2 − σ 2
ε )

)
.

Then, the contrast estimator defined in (1.1) is given by:

θ̂n = arg min
θ∈Θ

Pnmθ

= arg min
θ∈Θ

⎧⎨
⎩

φ2γ

4
√

π
−
√

2

π

φγ 2

n(γ 2 − σ 2
ε )3/2

n∑
j=1

Y j+1Y j exp

(
−1

2

Y 2
j

(γ 2 − σ 2
ε )

)⎫⎬
⎭. ��

C.1.2 Checking assumptions of Theorem 1

Mixing properties. If |φ| < 1, the process Yi is geometrically ergodic. For further
details, we refer to Dedecker et al. (2007).

Regularity conditions: It remains to prove that the assumptions of Theorem 1 hold.
It is easy to see that the only difficulty is to check the moment condition and the local
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Parametric estimation of hidden stochastic model 1061

dominance (C)-(T) and the uniqueness assumption (CT). The others assumptions are
easily to verify since the function lθ (x) is regular in θ belonging to Θ .

(CT): The limit contrast function Pmθ : θ ∈ Θ 
→ Pmθ given by:

θ 
→ Pmθ = ||lθ ||22 − 2
〈
lθ , lθ0

〉

= φ2γ

4
√

π
−
√

2

π

φφ0γ
2γ 2

0

(γ 2 + γ 2
0 )

3
2

,

is differentiable for all θ in Θ and ∇θ Pmθ = 0R2 if and only if θ is equal to θ0 . More
precisely its first derivatives are given by:

∂Pmθ

∂φ
= 1

4
√

π

φγ (2 − φ2)

(1 − φ2)
−
√

2

π
φ0γ

2
0 (γ 2 + γ 2

0 )−3/2

(
γ 2 + γ 2φ2

(1 − φ2)
− 3φ2γ 4

(1 − φ2)(γ 2 + γ 2
0 )

)
,

∂Pmθ

∂σ 2 = φ2

8
√

πσ(1 − φ2)1/2
−
√

2

π

φ0γ
2
0

(1 − φ2)(γ 2 + γ 2
0 )3/2

(
φ − 3φγ 2

(γ 2 + γ 2
0 )

)
,

and

∇θPmθ = 0R2 ⇔ θ = θ0

The partial derivatives of lθ w.r.t θ are given by:

∂lθ
∂φ

(x) =
(( −φ2

1 − φ2 + 1

)
x + φ2

(1 − φ2)γ 2 x3
)

1√
2πγ 2

e
− x2

2γ 2 ,

∂lθ
∂σ 2 (x) =

(
− φ

2(1 − φ2)γ 2 x + φ

2(1 − φ2)γ 4 x3
)

1√
2πγ 2

e
− x2

2γ 2 .

For the reader convenience let us introduce the following notations:

a1 = −φ2

(1 − φ2)
+ 1 = 1 − 2φ2

(1 − φ2)
and a2 = φ2

(1 − φ2)γ 2 , (24)

b1 = −φ

2(1 − φ2)γ 2 and b2 = φ

2(1 − φ2)γ 4 . (25)

We rewrite:

∇θ lθ (x) =
(

∂lθ
∂φ

(x),
∂lθ
∂σ 2 (x)

)′

=
(
(a1x + a2x3) × g0,γ 2(x), (b1x + b2x3) × g0,γ 2(x)

)′
,
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1062 S. El Kolei

where the function g0,γ 2 defines the normal probability density of a centered random
variable with variance γ 2. Now, we can use Corollary 1 to compute the Hessian matrix
Vθ0 :

Vθ0 = 2

⎛
⎜⎝

∥∥∥ ∂lθ
∂φ

∥∥∥2

2

〈
∂lθ
∂φ

,
∂lθ
∂σ2

〉
〈

∂lθ
∂σ2 ,

∂lθ
∂φ

〉 ∥∥∥ ∂lθ
∂σ2

∥∥∥2

2

⎞
⎟⎠

= 1

γ0
√

π(
a2

1E[X2] + 2a1a2E[X4] + a2
2E[X6] a1b1E[X2] + a1b2E[X4] + a2b1E[X4] + a2b2E[X6]

a1b1E[X2] + a1b2E[X4] + a2b1E[X4] + a2b2E[X6] b2
1E[X2] + 2b1b2E[X4] + b2

2E[X6]

)
,

(26)

with X ∼ N
(
0,

γ 2
0
2

)
. By replacing the terms a1, a2, b1 and b2 at the point θ0 we

obtain:

Vθ0 = 1

8
√

π(1 − φ2
0)2

⎛
⎜⎝γ0(7φ4

0 − 4φ2
0 + 4)

−5φ5
0+3φ3

0+2φ0

2γ0(1−φ2
0 )

−5φ5
0+3φ3

0+2φ0

2γ0(1−φ2
0 )

7φ2
0

4γ 3
0

⎞
⎟⎠ , (27)

which has a positive determinant equal to 0.0956 at the true value θ0 = (0.7, 0.3).
Hence, Vθ0 is non-singular. Furthermore, the strict convexity of the function Pmθ gives
that θ0 is a minimum.

(C): (Local dominance): We have:

E

[
sup
θ∈Θ

∣∣Y2u∗
lθ (Y1)

∣∣] = 1√
2π

E

[
sup
θ∈Θ

∣∣∣∣∣
φγ 2

(γ 2 − σ 2
ε )(3/2)

Y2Y1 exp

(
− Y 2

1

2(γ 2 − σ 2
ε )

)∣∣∣∣∣
]

.

The multivariate normal density of the pair Y1 = (Y1, Y2) denoted g(0,Jθ0 ) is given
by:

1

2π
det (Jθ0)

−1/2 exp

(
−1

2
y

′
1J

−1
θ0

y1

)
,

with:

Jθ0 =
(

σ 2
ε + γ 2

0 φ0γ
2
0

φ0γ
2
0 σ 2

ε + γ 2
0

)
and J −1

θ0
= 1

(σ 2
ε + γ 2

0 )2 − γ 4
0 φ2

0

(
σ 2

ε + γ 2
0 −φ0γ

2
0−φ0γ

2
0 σ 2

ε + γ 2
0

)
.

By definition of the parameter space Θ and as all moments of the pair Y1 exist, the

quantity E

[
supθ∈Θ

∣∣∣Y2u∗
lθ
(Y1)

∣∣∣] is finite.
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Moment condition (T): We recall that:

∇θ lθ (x) =
(

∂lθ
∂φ

(x),
∂lθ
∂σ 2 (x)

)′

=
(
(a1x + a2x3) × g0,γ 2(x), (b1x + b2x3) × g0,γ 2(x)

)′
.

The Fourier transforms of the first derivatives are:
(

∂lθ
∂φ

(x)

)∗
=
∫

exp (i xy)
(

a1 y + a2 y3
)

× g0,γ 2(y)dy

=−ia1E
[
iG exp (i xG)

]+ia2E

[
−iG3 exp (i xG)

]
where G∼N (0, γ 2)

= −ia1
∂

∂x
E
[
exp (i xG)

]+ ia2
∂3

∂x3 E
[
exp (i xG)

]

= −ia1
∂

∂x
exp

(
− x2

2
γ 2
)

+ ia2
∂3

∂x3 exp

(
− x2

2
γ 2
)

= (ia1γ
2x + 3ia2γ

4x − ia2γ
6x3) exp

(
− x2

2
γ 2
)

,

and

(
∂lθ
∂σ 2 (x)

)∗
= (ib1γ

2x + 3ib2γ
4x − ib2γ

6x3) exp

(
− x2

2
γ 2
)

.

We can compute the function u∇θ lθ (x):

u ∂lθ
∂φ

(x) = 1

2π

(
∂lθ
∂φ

(−x)
)∗

f ∗
ε (x)

= 1√
2π

(γ 2 − σ 2
ε )1/2 exp

(
− x2

2
(γ 2 − σ 2

ε )

)

×
{

1√
2π

1

(γ 2 − σ 2
ε )1/2

(
(−ia1γ

2 − 3ia2γ
4)x + ia2γ

6x3
)}

= −iC
(

A1x − A2x3
)

g0, 1
(γ 2−σ2

ε )

(x),

with C = 1√
2π

1
(γ 2−σ 2

ε )1/2 and A1 = a1γ
2 + 3a2γ

4 = γ 2 (1+φ2)

(1−φ2)
and A2 = a2γ

6 =
γ 4 φ2

(1−φ2)
. The Fourier transform of the function u ∂lθ

∂φ

(x) is given by:

u∗
∂lθ
∂φ

(x) = −iC
∫

exp (iyx)
(

A1 y − A2 y3
)

g(
0, 1

(γ 2−σ2
ε )

)(y)dy

= −C A1
∂

∂x
E
[
exp (i xG)

]− C A2
∂3

∂x3 E
[
exp (i xG)

]
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1064 S. El Kolei

where G ∼ N

(
0,

1

(γ 2 − σ 2
ε )

)

= −C A1
∂

∂x

(
exp

(
− x2

2(γ 2 − σ 2
ε )

))
− C A2

∂3

∂x3

(
exp

(
− x2

2(γ 2 − σ 2
ε )

))

=
(
Ψ

φ0
1 x + Ψ

φ0
2 x3

)
exp

(
− x2

2(γ 2 − σ 2
ε )

)
, (28)

with Ψ
φ0
1 = C

(
A1

(γ 2−σ 2
ε )

− 3A2
(γ 2−σ 2

ε )2

)
and Ψ

φ0
2 = C

(
A2

(γ 2−σ 2
ε )3

)
. By the same argu-

ments, we obtain:

u∗
∂lθ
∂σ2

(x) =
(

Ψ
σ 2

0
1 x + Ψ

σ 2
0

2 x3
)

exp

(
− x2

2(γ 2 − σ 2
ε )

)
, (29)

with Ψ
σ 2

0
1 = C

(
B1

(γ 2−σ 2
ε )

− 3B2
(γ 2−σ 2

ε )2

)
, Ψ

σ 2
0

2 = C
(

B2
(γ 2−σ 2

ε )3

)
, B1 = b1γ

2 +3b2γ
4 =

φ

(1−φ2)
and B2 = b2γ

6 = γ 2 φ

2(1−φ2)
.

Hence, for some δ > 0, E

[∣∣∣Y2u∗∇θ lθ
(Y1)

∣∣∣2+δ
]

is finite if:

E

⎡
⎣
∣∣∣∣∣
(
Ψ

φ0
1 Y1Y2 + Ψ

φ0
2 Y 3

1 Y2

)
exp

(
− Y 2

1

2(γ 2 − σ 2
ε )

)∣∣∣∣∣
2+δ

⎤
⎦ < ∞,

E

⎡
⎣
∣∣∣∣∣
(

Ψ
σ 2

0
1 Y1Y2 + Ψ

σ 2
0

2 Y 3
1 Y2

)
exp

(
− Y 2

1

2(γ 2 − σ 2
ε )

)∣∣∣∣∣
2+δ

⎤
⎦ < ∞,

which is satisfied by the existence of all moments of the pair Y1. One can check that
the Hessian local assumption (T) is also satisfied by the same arguments.

C.1.3 Explicit form of the covariance matrix

Lemma 3 The matrix Σ(θ0) in the Gaussian AR(1) model is given by:

Σ(θ0) = V −1
θ0

Ω(θ0)V −1
θ0

with

Vθ0 = 1

8
√

π(1 − φ2
0)2

⎛
⎜⎝γ0(7φ4

0 − 4φ2
0 + 4)

−5φ5
0+3φ3

0+2φ0

2γ0(1−φ2
0 )

−5φ5
0+3φ3

0+2φ0

2γ0(1−φ2
0 )

7φ2
0

4γ 3
0

⎞
⎟⎠ ,

and

Ω(θ0) = Ω0(θ0) + 2
∞∑
j>1

Ω j−1(θ0) = 4 [P2 − P1] + 8
∞∑
j>1

(C̃ j−1 − P1)
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Parametric estimation of hidden stochastic model 1065

where:

P1 =
⎛
⎜⎝

φ2
0γ 2

0 (2−φ2
0 )2

64π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ4
0

256π(1−φ2
0 )2γ 2

0

⎞
⎟⎠ ,

and P2 is the 2 × 2 symmetric matrix multiplied by a factor 1√
π(γ 2

0 −σ 2
ε )

and its coeffi-

cients (P2
lm)1≤l,m≤2 are given by:

P2
11 =

(
Ψ

φ0
1

)2
F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+15
(
Ψ

φ0
2

)2
F Ṽ 3

1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+6Ψ
φ0
1 Ψ

φ0
2 F Ṽ 2

1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
.

P2
22 =

(
Ψ

σ 2
0

1

)2

F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+15
(
Ψ

σ0
2

)2
F Ṽ 3

1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+6Ψ
σ 2

0
1 Ψ

σ 2
0

2 F Ṽ 2
1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
.

P2
12 = Ψ

φ0
1 Ψ

σ 2
0

1 F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+15Ψ
φ0
2 Ψ

σ 2
0

2 F Ṽ 3
1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+3Ψ
φ0
1 Ψ

σ 2
0

2 F Ṽ 2
1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+3Ψ
σ 2

0
1 Ψ

φ0
2 F Ṽ 2

1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
,

with F = 1
(σ 2

ε+γ 2
0 )2−γ 4

0 φ2
0

Ṽ 1/2
1 Ṽ 1/2

2 , Ṽ −1
1 = 2

(γ 2
0 −σ 2

ε )
+
(

γ 2
0+σ 2

ε

(σ 2
ε +γ 2

0 )2−γ 4
0 φ2

0

)(
1− φ2

0γ 4
0

(γ 2
0 +σ 2

ε )2

)
,

Ṽ2 = (γ 2
0 +σ 2

ε )2−φ2
0γ 4

0
(γ 2

0 +σ 2
ε )

, and:
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1066 S. El Kolei

Ψ
φ0
1 = 1√

2π

1

(γ 2
0 − σ 2

ε )3/2

(
(1 + φ2

0)γ 2
0

(1 − φ2
0)

− 3φ2
0γ 4

0

(1 − φ2
0)(γ 2

0 − σ 2
ε )

)
.

Ψ
σ 2

0
1 = 1√

2π

1

(γ 2
0 − σ 2

ε )3/2

(
φ0

(1 − φ2
0)

− 3φ0γ
2
0

2(1 − φ2
0)(γ 2

0 − σ 2
ε )

)
.

Ψ
φ0
2 = 1√

2π

1

(γ 2
0 − σ 2

ε )7/2

γ 4
0 φ2

0

(1 − φ2
0)

.

Ψ
σ 2

0
2 = 1√

2π

1

(γ 2
0 − σ 2

ε )7/2

γ 2
0 φ0

2(1 − φ2
0)

The covariance terms are given by:

C̃ j−1 = φ2
0

2πγ 2
0⎛

⎜⎜⎜⎝
(4φ4

0 − 4φ2
0 + 1)c̃1( j) + 2φ2

0 (1−2φ2
0 )

γ 2
0

c̃2( j) + φ4
0

γ 4
0

c̃3( j)
φ0(2φ2

0−1)

2γ 2
0

c̃1( j) + φ0(1−3φ2
0 )

2γ 4
0

c̃2( j) + φ3
0

2γ 6
0

c̃3( j)

φ0(2φ2
0−1)

2γ 2
0

c̃1( j) + φ0(1−3φ2
0 )

2γ 4
0

c̃2(i) + φ3
0

2γ 6
0

c̃3( j)
φ2

0
4γ 4

0
c̃1( j) − φ2

0
2γ 6

0
c̃2( j) + φ2

0
4γ 8

0
c̃3( j)

⎞
⎟⎟⎟⎠ ,

with:

c̃1( j) = 1

γ0
(2 − φ

2 j
0 )−1/2V 3/2

j

(
V + 3φ

2 j
0 Vj

(2 − φ
2 j
0 )2

)
,

c̃2( j) = 3

γ0
(2 − φ

2 j
0 )−1/2V 5/2

j

(
V + 5

φ
2 j
0 Vj

(2 − φ
2 j
0 )2

)
,

c̃3( j)= 3(2−φ
2 j
0 )−1/2

γ0
V 5/2

j

[
3V 2 + 5Vj (4V + 2)

φ
2 j
0

(2−φ
2 j
0 )2

+35V 2
j

φ
4 j
0

(2−φ
2 j
0 )4

]
,

where:

Vj = γ 2
0 (1 − φ

2 j
0 )(2 − φ

2 j
0 )

(2 − φ
2 j
0 )2 − φ

2 j
0

and V = γ 2
0 (1 − φ

2 j
0 )

2 − φ
2 j
0

Moreover lim j→∞ Ω j−1(θ0) = 0M2×2 .

Remark 6 In practice, for the computing of the covariance matrix Ω j−1(θ) that
appears in Corollary 1, we have truncated the infinite sum (qtrunc = 100).

Proof Calculus of ∇m
For all x ∈ R, the function lθ (x) is two times differentiable w.r.t θ on the compact

subset Θ . More precisely, note that since γ 2 = σ 2/(1 − φ2), it follows from the
definition of the subset Θ that (γ 2 − σ 2

ε ) > 0. So that for all yi in R
2 the function

mθ (yi ) : θ ∈ Θ 
→ mθ (yi ) is differentiable and:
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Parametric estimation of hidden stochastic model 1067

∇θ (mθ (yi )) =
(

∂mθ (yi )

∂φ
,
∂mθ (yi )

∂σ 2

)′

=
(

∂ ‖lθ‖2
2

∂φ
− 2yi+1u∗

∂lθ
∂φ

(yi ),
∂ ‖lθ‖2

2

∂σ 2 − 2yi+1u∗
∂lθ
∂σ2

(yi )

)′
,

with:
∂

∂φ
||lθ ||22 = φγ (2 − φ2)

4
√

π(1 − φ2)
,

∂

∂σ 2 ||lθ ||22 = φ2

8
√

π(1 − φ2)
.

And, the function u∗
∂lθ
∂φ

(x) and u∗
∂lθ
∂σ2

(x) are given in Eqs. (28)–(29). Therefore,

∇θ mθ (yi ) =

⎛
⎜⎜⎜⎝

(
φ0γ0(2−φ2

0 )

4
√

π(1−φ2
0 )

− 2yi+1

(
Ψ

φ0
1 yi + Ψ

φ0
2 y3

i

)
exp

(
− y2

i
2(γ 2

0 −σ 2
ε )

))
(

φ2
0

8
√

π(1−φ2
0 )

− 2yi+1

(
Ψ

σ 2
0

1 yi + Ψ
σ 2

0
2 y3

i

)
exp

(
− y2

i
2(γ 2

0 −σ 2
ε )

))
⎞
⎟⎟⎟⎠

at the point θ0. (30)

Calculus of P1: Recall that we have:

P1 = E
[
bθ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′
P2 = E

[
Y 2

2

(
u∗∇θ lθ (Y1)

)2]
.

And the moments (μ2k)k∈N of a centered Gaussian random variable with variance σ 2

are given by:

μ2k =
(

(2k)!
2kk!

)
σ 2k .

We define by P(x) a polynomial function of ordinary degree. We are interested in
the calculus of E

[
P(X)g0,γ 2(X)

]
, where X ∼ N (0, γ 2). We have:

E
[
P(X)g0,γ 2(X)

] =
∫

P(x)
1√

2πγ
e
− x2

2γ 2 1√
2πγ

e
− x2

2γ 2 dx

= 1

2πγ 2

∫
P(x)e

− x2

γ 2 dx

= 1

2
√

πγ
E
[
P(X̄)

]
,

where X̄ ∼ N

(
0,

γ 2

2

)
.
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Denote by B1 the constant 1
2
√

πγ0
. We obtain:

P1 =
⎛
⎜⎝ E

[
bφ0 (X1)

∂lθ
∂φ

(θ, X1)
]2

E

[
bφ0 (X1)

∂lθ
∂φ

(θ, X1)
]

E

[
bφ0 (X1)

∂lθ
∂σ 2 (θ, X1)

]

E

[
bφ0 (X1)

∂lθ
∂φ

(θ, X1)
]

E

[
bφ0 (X1)

∂lθ
∂σ 2 (θ, X1)

]
E

[
bφ0 (X1)

∂lθ
∂σ 2 (θ, X1)

]2

⎞
⎟⎠

= B2
1 φ2

0

(
E

[
H11(X̄)

]2
E

[
H12(X̄)

]
E

[
H21(X̄)

]
E

[
H21(X̄)

]
E

[
H12(X̄)

]
E

[
H22(X̄)

]2
)

,

where X̄ ∼ N
(
0,

γ 2
0

2

)
. The polynomials

(
Hi j (x)

)
1≤i, j≤2 are given by:

H11(x) =
(

a1x2 + a2x4
)
,

H12(x) =
(

b1x2 + b2x4
)
,

H21(x) =
(

a1x2 + a2x4
)
,

H22(x) =
(

b1x2 + b2x4
)
.

Lastly, by replacing the terms B1, a1, and a2 by their expressions given in Eq. (24)
at the point θ0, we obtain:

P1 = E
[
bφ0(X1) (∇θ lθ (X1))

]
E
[
bφ0(X1) (∇θ lθ (X1))

]′

=
⎛
⎜⎝

φ2
0γ 2

0 (2−φ2
0 )2

64π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ4
0

256π(1−φ2
0 )2γ 2

0

⎞
⎟⎠ .

Calculus of P2:

E

[(
Y2u∗∇θ lθ

(Y1)
) (

Y2u∗∇θ lθ
(Y1)

)′] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E

⎡
⎢⎣Y 2

2

⎛
⎝u∗

∂lθ
∂φ

(Y1)

⎞
⎠

2
⎤
⎥⎦ E

⎡
⎣Y 2

2

⎛
⎝u∗

∂lθ
∂φ

(Y1)

⎞
⎠
⎛
⎝u∗

∂lθ
∂σ2

(Y1)

⎞
⎠
⎤
⎦

E

⎡
⎣Y 2

2

⎛
⎝u∗

∂lθ
∂σ2

(Y1)

⎞
⎠
⎛
⎝u∗

∂lθ
∂φ

(Y1)

⎞
⎠
⎤
⎦ E

⎡
⎢⎣Y 2

2

⎛
⎝u∗

∂lθ
∂σ2

(Y1)

⎞
⎠

2
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

We have:

(
2π

(γ 2
0 − σ 2

ε )

2

)−1/2

E

[
Y 2

2

(
u∗

∂lθ
∂φ

(Y1)

)2
]

= E

⎡
⎣Y 2

2

(
Ψ

φ0
1 Y1 + Ψ

φ0
2 Y 3

1

)2 × g(
0,

(γ 2
0 −σ2

ε )

2

)
⎤
⎦

=
(
Ψ

φ0
1

)2
E

⎡
⎣Y 2

2 Y 2
1 × g(

0,
(γ 2−σ2

ε )

2

)
⎤
⎦
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+
(
Ψ

φ0
2

)2
E

⎡
⎣Y 2

2 Y 6
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦

+2Ψ
φ0
1 Ψ

φ0
2 E

⎡
⎣Y 2

2 Y 4
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦ . (31)

The density of Y1 is g(0,Jθ0 ). Then, g(0,Jθ0 )× exp

(
− y2

1
(γ 2

0 −σ 2
ε )

)
is equal to:

1

2π

1(
(σ 2

ε + γ 2
0 )2 − γ 4

0 φ2
0

)1/2 exp

(
−1

2

1(
(σ 2

ε + γ 2
0 )2 − γ 4

0 φ2
0

)

(
(σ 2

ε + γ 2
0 )(y2

1 + y2
2 ) − 2φ0γ

2
0 y1 y2

))
× exp

(
−1

2

2

(γ 2
0 − σ 2

ε )
y2

1

)

= 1

2π

1(
(σ 2

ε + γ 2
0 )2 − γ 4

0 φ2
0

)1/2

× exp

(
−1

2
y2

1

(
2

(γ 2
0 − σ 2

ε )
− (γ 2

0 + σ 2
ε )(

(σ 2
ε + γ 2

0 )2 − γ 4
0 φ2

0

)
))

× exp

(
−1

2
y2

2

(
(γ 2

0 + σ 2
ε )(

(σ 2
ε + γ 2

0 )2 − γ 4
0 φ2

0

)
))

× exp

(
−1

2
y1 y2

(
2φ0γ

2
0(

(σ 2
ε + γ 2

0 )2 − γ 4
0 φ2

0

)
))

= 1

2π

1(
(σ 2

ε + γ 2
0 )2 − γ 4

0 φ2
0

)1/2 exp

⎛
⎝−1

2

⎛
⎝Ṽ −1

2

(
y2 − φ0γ

2
0

γ 2
0 + σ 2

ε

y1

)2
⎞
⎠
⎞
⎠

× exp

(
−1

2
y2

1 Ṽ −1
1

)
,

with Ṽ −1
1 = 2

(γ 2
0 −σ 2

ε )
+
(

γ 2
0 +σ 2

ε

(σ 2
ε +γ 2

0 )2−γ 4
0 φ2

0

)(
1 − φ2

0γ 4
0

(γ 2
0 +σ 2

ε )2

)
and Ṽ2 = (γ 2

0 +σ 2
ε )2−φ2

0γ 4
0

(γ 2
0 +σ 2

ε )
.

Then, we obtain:

g(0,Jθ0 ) × exp

(
− y2

1

(γ 2
0 − σ 2

ε )

)
= 1

((σ 2
ε + γ 2

0 )2 − γ 4
0 φ2

0)1/2
Ṽ 1/2

1 Ṽ 1/2
2

g
(φ0γ

2
0 y1/(γ

2
0 +σ 2

ε ),Ṽ2)
(y2)g(0,Ṽ1)

(y1).
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In the following, we set F = 1
(σ 2

ε +γ 2
0 )2−γ 4

0 φ2
0

Ṽ 1/2
1 Ṽ 1/2

2 . Now, we can compute the

moments:

(
Ψ

φ0
1

)2
E

[
Y 2

2 Y 2
1 exp

(
− Y 2

1

(γ 2
0 − σ 2

ε )

)]

=
(
Ψ

φ0
1

)2
F

∫
y2

1 g
(0,Ṽ1)

(y1)dy1

∫
y2

2 g
(φ0γ

2
0 y1/(γ

2
0 +σ 2

ε ),Ṽ2)
(y2)dy2

=
(
Ψ

φ0
1

)2
F

∫
y2

1 g(0,V1)(y1)dy1E

[
G2
]

where G ∼ N (φ0γ
2
0 y1/(γ

2
0 + σ 2

ε ), Ṽ2)

=
(
Ψ

φ0
1

)2
F

∫ (
Ṽ2 y2

1 + φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
y4

1

)
g
(0,Ṽ1)

(y1)dy1

=
(
Ψ

φ0
1

)2
F Ṽ2Ṽ1 + 3

(
Ψ

φ0
1

)2
F

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ 2

1

=
(
Ψ

φ0
1

)2
F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
.

In a similar manner, we have:

(
Ψ

φ0
2

)2
E

[
Y 2

2 Y 6
1 exp

(
− Y 2

1

(γ 2
0 − σ 2

ε )

)]

=
(
Ψ

φ0
2

)2
F

∫
y6

1 g(0,V1)(y1)dy1E

[
G2
]

where G ∼ N (φ0γ
2
0 y1/(γ

2
0 + σ 2

ε ), Ṽ2)

=
(
Ψ

φ0
2

)2
F

∫ (
Ṽ2 y6

1 + φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
y8

1

)
g
(0,Ṽ1)

(y1)dy1

= 15
(
Ψ

φ0
2

)2
F Ṽ2Ṽ 3

1 + 105
(
Ψ

φ0
2

)2
F

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ 4

1

= 15
(
Ψ

φ0
2

)2
F Ṽ 3

1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
,

and

2Ψ
φ0
1 Ψ

φ0
2 E

[
Y 2

2 Y 4
1 exp

(
− Y 2

1

(γ 2
0 − σ 2

ε )

)]

=2Ψ
φ0
1 Ψ

φ0
2 F

∫
y4

1 g(0,V1)(y1)dy1E

[
G2
]

where G ∼N (φ0γ
2
0 y1/(γ

2
0 +σ 2

ε ), Ṽ2)

= 2Ψ
φ0
1 Ψ

φ0
2 F

∫ (
Ṽ2 y4

1 + φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
y6

1

)
g
(0,Ṽ1)

(y1)dy1
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= 6Ψ
φ0
1 Ψ

φ0
2 F Ṽ2Ṽ 2

1 + 30Ψ
φ0
1 Ψ

φ0
2 F

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ 3

1

= 6Ψ
φ0
1 Ψ

φ0
2 F Ṽ 2

1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
.

By replacing all the terms of Eq. (31) we obtain:

E

[
Y 2

2

(
u∗

∂lθ
∂φ

(Y1)

)2
]

=
(
Ψ

φ0
1

)2
F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+15
(
Ψ

φ0
2

)2
F Ṽ 3

1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+6Ψ
φ0
1 Ψ

φ0
2 F Ṽ 2

1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
, (32)

and

E

[
Y 2

2

(
u∗

∂lθ
∂σ2

(Y1)

)2
]

=
(

Ψ
σ 2

0
1

)2

F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+15

(
Ψ

σ 2
0

2

)2

F Ṽ 3
1

(
Ṽ2 + 7

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)

+6Ψ
σ 2

0
1 Ψ

σ 2
0

2 F Ṽ 2
1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
, (33)

and

E

[
Y 2

2

(
u∗

∂lθ
∂φ

(Y1)

)(
u∗

∂

∂σ2 lθ
(Y1)

)]

= Ψ
φ0
1 Ψ

σ 2
0

1 E

⎡
⎣Y 2

2 Y 2
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦+ Ψ

φ0
2 Ψ

σ 2
0

2 E

⎡
⎣Y 2

2 Y 6
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦

+Ψ
φ0
1 Ψ

σ 2
0

2 E

⎡
⎣Y 2

2 Y 4
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦+ Ψ

φ0
2 Ψ

σ 2
0

1 E

⎡
⎣Y 2

2 Y 4
1 × g(

0,
(γ 2

0 −σ2
ε )

2

)
⎤
⎦

= Ψ
φ0
1 Ψ

σ 2
0

1 F Ṽ1

(
Ṽ2 + 3

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
+ 15Ψ

φ0
2 Ψ

σ 2
0

2 F Ṽ 3
1

×
(

Ṽ2 + 7
φ2

0γ 4
0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
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+3Ψ
φ0
1 Ψ

σ 2
0

2 F Ṽ 2
1

(
Ṽ2 + 5

φ2
0γ 4

0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
+ 3Ψ

φ0
2 Ψ

σ 2
0

1 F Ṽ 2
1

×
(

Ṽ2 + 5
φ2

0γ 4
0

(γ 2
0 + σ 2

ε )2
Ṽ1

)
. (34)

Calculus of Cov
(∇θmθ (Y1),∇θ mθ (Y j )

)
: We want to compute:

Cov
(∇θ mθ (Y1),∇θ mθ (Y j )

) = 4
[
C̃ j−1 − P1

]
.

Since we have already computed the terms of the matrix P1, it remains to compute
the terms of the covariance matrix C̃ j−1 given by:

C̃ j−1 = E

[
bφ0(X1)bφ0(X j ) (∇θ lθ (X1))

(∇θ lθ (X j )
)′]

.

For all j > 1, the pair (X1, X j ) has a multivariate normal density g(0,W ) where W
is given by:

W = γ 2
0

(
1 φ

j
0

φ
j
0 1

)
and W −1 = 1

γ 2
0 (1 − φ

2 j
0 )

(
1 −φ

j
0

−φ
j
0 1

)
.

The density of the couple (X1, X j ) is:

g(0,W )(x1, x j ) = 1

2π
det (W )−1/2 exp

(
−1

2
(x1, x j )

′
W −1(x1, x j )

)
.

We start by computing:

g(0,W )(x1, x j ) × exp

(
− 1

2γ 2
0

(
x2

1 + x2
j

))
.

We have:

g(0,W )(x1, x j ) × exp

(
− 1

2γ 2
0

(x2
1 + x2

j )

)

= 1

2π
det (W )−1/2 exp

(
− 1

2(1 − φ
2 j
0 )γ 2

0

(
x2

1 (1 − φ
2 j
0 ) + x2

j (1 − φ
2 j
0 ) + x2

1 − 2φ
j
0 x1x j + x2

j

))
,

= 1

2π
det (W )−1/2 exp

(
− 1

2(1 − φ
2 j
0 )γ 2

0

[(
x2

1 (1 − φ
2 j
0 ) + x2

1 − 2φ
j
0 x1x j

)

+
(

x2
j (1 − φ

2 j
0 ) + x2

j

)])
,

= 1

2π
det (W )−1/2 exp

(
− 1

2(1 − φ
2 j
0 )γ 2

0

[
(2 − φ

2 j
0 )

(
x2

1 − 2
φ

j
0

(2 − φ
2 j
0 )

x1x j

)
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+
(

x2
j (1 − φ

2 j
0 ) + x2

j

)])
,

= 1

2π
det (W )−1/2 exp

⎛
⎝− (2 − φ

2 j
0 )

2(1 − φ
2 j
0 )γ 2

0

(
x1 − φ

j
0 x j

(2 − φ
2 j
0 )

)2
⎞
⎠

× exp

(
− (2 − φ

2 j
0 )

2(1 − φ
2 j
0 )γ 2

0

x2
j

(
1 − φ

2 j
0

(2 − φ
2 j
0 )2

))
.

For all j > 1, we define:

Vj = γ 2
0 (1 − φ

2 j
0 )(2 − φ

2 j
0 )

(2 − φ
2 j
0 )2 − φ

2 j
0

and V = γ 2
0 (1 − φ

2 j
0 )

(2 − φ
2 j
0 )

.

We can rewrite:

g(0,W )(x1, x j ) × exp

(
− 1

2γ 2
0

(x2
1 + x2

j )

)

=
V 1/2

j

γ0

1√
2πV 1/2

j

exp

(
− 1

2Vj
x2

j

)
× 1

(2 − φ
2 j
0 )1/2

√
2πV 1/2

exp

⎛
⎝− 1

2V

(
x1 − φi

0x j

(2 − φ
2 j
0 )

)2
⎞
⎠ .

So, by Fubini’s Theorem, we obtain:

E

[
X2

1 X2
j exp

(
− 1

2γ 2
0

(
X2

1 + X2
j

))]

= 1

γ0
V 1/2

j

∫
x2

j
1√

2πV 1/2
j

exp

(
− 1

2Vj
x2

j

)∫
x2

1
(2 − φ

2 j
0 )−1/2

√
2πV 1/2

exp

⎛
⎝− 1

2V

(
x1 − φ

j
0 x j

(2 − φ
2 j
0 )

)2
⎞
⎠ dx1dx j ,

= 1

γ0
V 1/2

j

∫
x2

j
1√

2πV 1/2
j

exp

(
− 1

2Vj
x2

j

)
(2 − φ

2 j
0 )−1/2

E[G2]dx j ,

where G ∼ N

(
φ

j
0 x j

(2 − φ
2 j
0 )

,V

)
. Thus, E[G2] = V +

(
φ

j
0 x j

(2−φ
2 j
0 )

)2

. We obtain:

E

[
X2

1 X2
j exp

(
− 1

2γ 2
0

(
X2

1 + X2
j

))]

= (2 − φ
2 j
0 )−1/2

V 1/2
j

γ0
(2 − φ

2 j
0 )−1/2

∫
x2

j

⎛
⎝V +

(
φ

j
0 x j

(2 − φ
2 j
0 )

)2⎞
⎠ 1√

2πV 1/2
j

exp

(
− 1

2Vj
x2

j

)
dx j

=
V 1/2

j

γ0
(2 − φ

2 j
0 )−1/2

(
V E[G2

j ] + φ
2 j
0

(2 − φ
2 j
0 )2γ0

E[G4
j ]
)

=
V 3/2

j

γ0
(2 − φ

2 j
0 )−1/2

(
V + 3φ

2 j
0 Vj

(2 − φ
2 j
0 )2

)

= c̃1( j), (35)
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where G j ∼ N
(
0, Vj

)
. Additionally, we have:

E

[
X2

1 X4
j exp

(
− 1

2γ 2
0

(
X2

1 + X2
j

))]

= V 1/2
j

γ0
(2 − φ

2 j
0 )−1/2V E[G4

j ] + V 1/2
j

(2 − φ
2 j
0 )−1/2φ

2 j
0

(2 − φ
2 j
0 )2

E[G6
j ],

= 3V 5/2
j

γ0
(2 − φ

2 j
0 )−1/2

(
V + 5

φ
2 j
0 Vj

(2 − φ
2 j
0 )2

)
,

= c̃2( j). (36)

Now, we are interested in E

[
X4

1 X4
j exp

(
− 1

2γ 2
0
(X2

1 + X2
j )

)]
. In a similar manner,

we obtain:

E

[
X4

1 X4
j exp

(
− 1

2γ 2
0

(
X2

1 + X2
j

))]

= V 1/2
j

γ0

∫
x4

j
1√

2πV 1/2
j

exp

(
− 1

2Vj
x2

j

)
(2 − φ

2 j
0 )−1/2

E[G4]dx j , (37)

where G ∼ N

(
φ

j
0 x j

(2−φ
2 j
0 )

,V

)
. We use the fact that the moments of a random variable

X ∼ N (μ, v) are:

E
[
Xn] = (n − 1)vE

[
Xn−2

]
+ μE

[
Xn−1

]

E[G4] = 3V E[G2] +
(

φ
j
0 x j

(2 − φ
2 j
0 )

E[G3]
)

= 3V 2 + (4V + 2)
φ

2 j
0 x2

j

(2 − φ
2 j
0 )2

+ φ
4 j
0 x4

j

(2 − φ
2 j
0 )4

.

By replacing E[G4] in Eq. (37), we have:

E

[
X4

1 X4
j exp

(
− 1

2γ 2
0

(
X2

1 + X2
j

))]

= 3(2 − φ
2 j
0 )−1/2

γ0
V 5/2

j

[
3V 2 + 5Vj (4V + 2)

φ
2 j
0

(2 − φ
2 j
0 )2

+ 35V 2
j

φ
4 j
0

(2 − φ
2 j
0 )4

]
,

= c̃3( j). (38)
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For all j > 1, the matrix C̃ j−1 is given by:

C̃ j−1 = φ2
0

2πγ 2
0

(
a2

1 c̃1( j) + 2a1a2 c̃2( j) + a2
2 c̃3( j) a1b1 c̃1( j) + a1b2 + a2b1 c̃2( j) + a2b2 c̃3( j)

a1b1 c̃1( j) + a1b2 + a2b1 c̃2( j) + a2b2 c̃3( j) b2
1 c̃1( j) + 2b1b2 c̃2( j) + b2

2 c̃3( j)

)
,

where the coefficients c̃1( j), c̃2( j), and c̃3( j) are given by (35), (36) and (38).
Finally, by replacing the terms a1, a2, b1 and b2, the matrix C̃ j−1 is equal to:

C̃ j−1 = A

⎛
⎜⎜⎜⎝

(4φ4
0 − 4φ2

0 + 1)c̃1( j) + 2φ2
0 (1−2φ2

0 )

γ 2
0

c̃2( j) + φ4
0

γ 4
0

c̃3( j)
φ0(2φ2

0−1)

2γ 2
0

c̃1( j) + φ0(1−3φ2
0 )

2γ 4
0

c̃2( j) + φ3
0

2γ 6
0

c̃3( j)

φ0(2φ2
0−1)

2γ 2
0

c̃1( j) + φ0(1−3φ2
0 )

2γ 4
0

c̃2( j) + φ3
0

2γ 6
0

c̃3( j)
φ2

0
4γ 4

0
c̃1( j) + −φ2

0
2γ 6

0
c̃2( j) + φ2

0
4γ 8

0
c̃3( j)

⎞
⎟⎟⎟⎠ ,

where A = φ2
0

2πγ 2
0 (1−φ2

0 )2 .

Asymptotic behaviour of the covariance matrix Ω j−1(θ0): By the stationary
assumption |φ0| < 1, the limits of the following terms are:

lim
j→∞ Vj = γ 2

0

2
and lim

j→∞ V = γ 2
0

2
,

and

lim
j→∞ c̃1( j) = γ 4

0

8
, lim

j→∞ c̃2( j) = 3γ 6
0

16
, lim

j→∞ c̃3( j) = 9γ 8
0

32
.

Therefore,

lim
j→∞ C̃ j−1 =

⎛
⎜⎝

φ2
0γ 2

0 (2−φ2
0 )2

64π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ3
0 (2−φ2

0 )

128π(1−φ2
0 )2

φ4
0

256π(1−φ2
0 )2γ 2

0

⎞
⎟⎠ = P1.

We obtain:

lim
j→∞ Cov

(∇θ mθ0(Y1),∇θ mθ0(Y j )
) = 4 lim

j→∞(C̃ j−1 − P1)

= 0M2×2 .

We conclude that the covariance between the two vectors ∇θmθ0(Y1),∇θ mθ0(Y j )

vanishes when the lag between the two observations Y1 and Y j goes to the infinity.
Calculus of Vθ0 : The Hessian matrix Vθ0 is given in Eq. (27).
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C.2 The SV model

C.2.1 Contrast function

The L2-norm and the Fourier transform of the function lθ are the same as the Gaussian
AR(1) model. The only difference is the law of the measurement noise which is a
log-chi-square for the log-transform SV model.

Consider the random variable ε = β log(X2) − Ẽ where Ẽ = βE[log(X2)] such
that ε is centered. The random variable X is a standard Gaussian random. The Fourier
transform of ε is given by:

E
[
exp (iεy)

] = exp
(
−i Ẽ y

)
E

[
X2iβy

]

= exp
(
−i Ẽ y

) 1√
2π

+∞∫
−∞

x2iβy exp

(
− x2

2

)
dx

By a change of variable z = x2

2 , one has:

E
[
exp (iεy)

] = exp
(
−i Ẽ y

) 2iβy

√
π

∫ +∞

0
ziβy− 1

2 e−zdz
︸ ︷︷ ︸

Γ
(

1
2 +iβy

)

= exp
(
−i Ẽ y

) 2iβy

√
π

Γ

(
1

2
+ iβy

)
,

and the expression (14) of the contrast function follows with ulθ (y) = 1
2
√

π⎛
⎝ −iφyγ 2 exp

(
−y2

2 γ 2
)

exp
(
−i Ẽ y

)
2iβyΓ

(
1
2 +iβy

)
⎞
⎠.

C.2.2 Checking assumption of Theorem 1

Regularity conditions: The proof is essentially the same as for the Gaussian case since
the functions lθ (x) and Pmθ are the same. We need only to check the assumptions (C)
and (T). These assumptions are satisfied since Fan (1991) showed that the noises εi

have a Fourier transform f ∗
ε which satisfies:

| f ∗
ε (x)| = √

2 exp
(
−π

2
|x |
)(

1 + O

(
1

|x |
))

, |x | → ∞,

which means that fε is super-smooth in its terminology. Furthermore, by the com-
pactness of the parameter space Θ and as the functions l∗θ , and for j, k ∈ {1, 2},
the functions ( ∂lθ

∂θ j
)∗ ( ∂2lθ

∂θ j ∂θk
)∗, have the following form C1(θ)P(x) exp

(−C2(θ)x2
)

where C1(θ) and C2(θ) are two constants well defined in the parameter space Θ with
C2(θ) > 0, we obtain:
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⎧⎪⎪⎨
⎪⎪⎩

E

(∣∣∣Y2u∗∇θ lθ
(Y1)

∣∣∣2+δ
)

< ∞ for some δ > 0,

E

(
supθ∈U

∥∥∥∥Y2u∗
∇2

θ lθ
(Y1)

∥∥∥∥
)

< ∞ for some neighbourhood U of θ0.

C.2.3 Expression of the covariance matrix

As, the functions lθ (x) and Pmθ are the same for the two models, the expressions of
the matrix Vθ0 and Ω j (θ0) are given in Lemma 3. We need only to use an estimator
of P2 = E[Y 2

2 (u∗∇lθ
(Y1))

2] since we can just approximate u∗∇lθ
(y). A natural and

consistent estimator of P2 is given by:

P̂2 = 1

n

n−1∑
i=1

(
Y 2

i+1(u
∗∇lθ (Yi ))

2
)
, (39)

Remark 7 In some models, the covariance matrix Ω j (θ̂n) cannot be explicitly com-
putable. We refer the reader to Hayashi (2000) chapter 6 Section 6.6 p.408 for this
case.

Appendix D: EM algorithm

We first refer to Dempster et al. (1977) for general details on the EM algorithm. The
EM algorithm is an iterative procedure for maximizing the log-likelihood l(θ) =
log( fθ (Y1:n)). Suppose that after the kth iteration, the estimate for θ is given by θk .
Since the objective is to maximize l(θ), we want to compute an updated θ such that:

l(θ) > l(θk)

Hidden variables can be introduced for making the ML estimation tractable. Denote
the hidden random variables U1:n and a given realization by u1:n . The total probability
fθ (Y1:n) can be written as:

fθ (Y1:n) =
∑
u1:n

fθ (Y1:n|u1:n) fθ (u1:n)

Hence,

l(θ) − l(θk)

= log( fθ (Y1:n)) − log( fθk (Y1:n))

= log

(∑
u1:n

fθ (Y1:n|u1:n) fθ (u1:n)

)
−log( fθk (Y1:n))

= log

(∑
u1:n

fθ (Y1:n|u1:n) fθ (u1:n)
fθk (u1:n|Y1:n)

fθk (u1:n|Y1:n)

)
− log( fθk (Y1:n))
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= log

(∑
u1:n

fθk (u1:n|Y1:n)
fθ (Y1:n|u1:n) fθ (u1:n)

fθk (u1:n|Y1:n)

)
−log( fθk (Y1:n)) (40)

≥
∑
u1:n

fθk (u1:n|Y1:n) log

(
fθ (Y1:n|u1:n) fθ (u1:n)

fθk (u1:n|Y1:n)

)
−log( fθk (Y1:n)) (41)

=
∑
u1:n

fθk (u1:n|Y1:n) log

(
fθ (Y1:n|u1:n) fθ (u1:n)

fθk (u1:n|Y1:n)

)

− log( fθk (Y1:n))
∑
u1:n

fθk (u1:n|Y1:n) (42)

=
∑
u1:n

fθk (u1:n|Y1:n) log

(
fθ (Y1:n|u1:n) fθ (u1:n)

fθk (u1:n|Y1:n) fθk (Y1:n)

)

= Δ(θ, θk).

In going from Eq. (40) to (41) we use the Jensen inequality: log
∑n

i=1 λi xi ≥∑n
i=1 λi log(xi ) for constants λi ≥ 0 with

∑n
i=1 λi = 1. And in going from Eq.

(41) to (42) we use the fact that
∑

u1:n fθk (u1:n|Y1:n) = 1. Hence,

l(θ) ≥ l(θk) + Δ(θ, θk) = L (θ, θk) and Δ(θ, θk) = 0 for θ = θk

The function L (θ, θk) is bounded by the log-likelihood function l(θ) and they are
equal when θ = θk . Consequently, any θ which increases L (θ, θk) will increases
l(θ). The EM algorithm selects θ such that L (θ, θk) is maximized. We denote this
updated value θk+1. Thus,

θk+1 = arg max
θ

{
l(θk) +

∑
u1:n

fθk (u1:n|Y1:n) log

(
fθ (Y1:n|u1:n) fθ (u1:n)

fθk (u1:n|Y1:n) fθk (Y1:n)

)}

= arg max
θ

{∑
u1:n

fθk (u1:n|Y1:n) log fθ (Y1:n|u1:n) fθ (u1:n)
}

if we drop the terms which don’t depend on θ.

= arg max
θ

{E[log fθ (Y1:n|u1:n) fθ (u1:n)]}
where the expectation is according to fθk (u1:n|Y1:n). (43)

D.1 Simulated expectation maximization estimator

Here, we describe the SIEMLE proposed by Kim et al. (1994) for the SV model,
these authors retain the linear log-transform model given in (13). However, instead of
approximating the log-chi-square distribution of εi with a Gaussian distribution, they
approximate εi by a mixture of seven Gaussian. The distribution of the noise is given
by:
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fεi (x) ≈
7∑

j=1

q j × g(m j ,v
2
j )
(x),

≈
7∑

j=1

q j fεi |si = j (x)

where g(m,v)(x) denotes the Gaussian distribution of εi with mean m and variance v,
and fεi |si = j (x) is a Gaussian distribution conditional to an indicator variable si at time
i and the variables q j , j = 1 . . . , 7 are the given weights attached to each component
and such that

∑7
j=1 q j = 1. Note that, most importantly, given the indicator variable

si at each time i , the log-transform model is Gaussian. That is:

fθ (Yi |si = j, Xi ) ∼ g(Xi +m j ,v
2
j )
.

Then, conditionally to the indicator variable si , the SV model becomes a Gaussian
state-space model and the Kalman filter can be used in the SIEMLE in order to compute
the log-likelihood function given by:

log fθ (Y1:n|s1:n) = −n

2
log(2π) − 1

2

n∑
i=1

log Fi − 1

2

n∑
i=1

ν2
i

Fi
,

with νi = (Yi − Ŷ −
i − msi ) and Fi = Vθ [νi ] = P−

i + v2
si

. The quantities Ŷ −
i =

Eθ [Yi |Y1:i−1] and P−
i = Vθ [(Xi − X̂−

i )2] are computed by the Kalman filter.
Hence, if we consider that the missing data u1:n for the EM correspond to the

indicator variables s1:n , then according to Eq. (43) and since f (s1:n) do not depend on
θ , the Maximization step is:

θk+1 = arg max
θ

{E[log fθ (Y1:n|s1:n)]} = arg max
θ

Q(θ, θk)

where the expectation is according to fθk (s1:n|Y1:n). Nevertheless, for the SV model,
the problem with the EM algorithm is that the density fθ (s1:n|Y1:n) is unknown. The

main idea consists in introducing a Gibbs algorithm to obtain M̃ draws s(1)
1:n, . . . , s(M̃)

1:n
from the law fθ (s1:n|Y1:n). Hence, the objective function Q(θ, θk) is approximated by:

Q̃(θ, θk) = 1

M̃

M̃∑
l=1

log fθ
(

Y1:n|s(l)
1:n
)

Then, the simulated EM algorithm for the SV model is as follows: Let C > 0 be a
threshold to stop the algorithm and θk a given arbitrary value of the parameter. While
|θk − θk−1| > C,

1. Apply the Gibbs sampler as follows:
The Gibbs Sampler: Choose arbitrary starting values X (0)

1:n , and let l = 0.
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(a) Sample s(l+1)
1:n ∼ fθk (s1:n|Y1:n, X (l)

1:n).

(b) Sample X (l+1)
1:n ∼ fθk (X1:n|Y1:n, s(l+1)

1:n ).
(c) Set l = l + 1 and goto (a).

2. θk+1 = arg maxθ Q̃(θ, θk).

Step (a): to sample the vector s1:n from its full conditional density, we sample each
si independently. We have:

fθk (s1:n|Y1:n, X1:n) =
n∏

r=1

fθk (sr |Yr , Xr ) ∝
n∏

r=1

fθk (Yr |sr , Xr ) f (sr ),

and fθk (Yr |sr = j, Xr ) ∝ g(Xr +m j ,v
2
j )

for j = 1 . . . , 7. And the step (b) of the Gibbs

sampler is conducted by the Kalman filter since the model is Gaussian.
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