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Abstract

We develop a new model of a �featureful� city in which locations are di¤erentiated

by two attributes, that is, the distance to employment centers and the accessibility to

given amenities. The residential equilibrium involves the spatial separation of households

sharing similar incomes. Under Stone-Geary preferences, amenities and commuting are

subsumed into a location-quality index. Hence, the assignment of households to locations

becomes one-dimensional. Since residential choices are driven by the location-quality

index, the income mapping may be fully characterized. Using a rich micro-dataset on the

Randstad, the Netherlands, we show that household income sorting is indeed driven by

amenities and commuting times.
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1 Introduction

Residential segregation by income is a prominent and growing feature of many metropolitan

areas. While residential segregation generates negative and persistent e¤ects on economic devel-

opment and social cohesion, it both re�ects and reinforces interpersonal and social inequalities.

For these reasons, we �nd it important to study the spatial sorting of heterogeneous consumers.

We also believe that such an e¤ort is warranted if policy actions against spatial segregation are

taken to favor more social cohesion.

The canonical monocentric city model leads to a fairly extreme prediction: households are

sorted by increasing income order as the distance to the central business district rises. This

result contradicts empirical evidence (Glaeser et al., 2008; Rosenthal and Ross, 2015). One

missing key explanation is the existence of amenity endowments, such as historic buildings

and architecture, scenic landscapes, river and sea proximity. That such amenities matter in

residential choices has been well documented (Brueckner et al., 1999; Glaeser et al., 2001;

Koster and Rouwendal, 2017; Lee and Lin, 2018; Cuberes et al., 2019). Other facilities that

appeal to people, such as restaurants and shops, are often located together with households.

Such endogenous amenities are ignored in this paper because they are likely to be a consequence

of residential choices, and thus the result of spatial income sorting.

This paper proposes a new approach that combines housing consumption and heterogene-

ity in incomes and locations. To be precise, we propose a new approach in which cities are

�featureful�in that locations are distinguished by two vertically di¤erentiated attributes, that

is, commuting costs and the accessibility to given and dispersed amenities. While the demand

for amenities has a tendency to rise with income, high-income commuters bear higher costs

than low-income commuters. Our aim is then to study how local amenity endowments and

commuting costs interact to determine the spatial sorting of income-heterogeneous households.

To check the relevance of our approach, we estimate the so-obtained income mapping by using

rich datasets from the Netherlands.

The study of income sorting when locations are di¤erentiated by more than one attribute

brings about new, di¢ cult issues. Indeed, the determination of a residential equilibrium has

the nature of a matching problem between landlords and households in which land at speci�c

locations is di¤erentiated by two characteristics and households by one characteristic. Multidi-

mensional matching problems typically assume quasi-linear preferences and indivisible choices

(Chiappori, 2017). We square the circle of endogenous and income-dependent housing con-

sumption by using the bid-rent approach.

What are our main contributions? First, we model space as a topological network. Attempts

made to move away from the standard one-dimensional framework of urban economics typically
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use the Euclidean plane. Such an approach neglects one the most fundamental features of a

space-economy, that is, the shape and density of its transportation networks. Residences and

jobs are thus distributed over the topological network.

Second, recent surveys, such as Duranton and Puga (2015) and Behrens and Robert-Nicoud

(2015), express some skepticism about the ability of the bid-rent approach to deal with a contin-

uum of heterogeneous households to be mapped on a continuum of locations. We demonstrate

that the bid-rent approach is still applicable to such settings and show that the interaction

between amenities and commuting gives rise to turning points in the spatial income distribu-

tion. In other words, provided that amenities are distributed unevenly across space, a greater

geographical distance between households no longer implies a wider income gap.

Third, when commuting costs vary with income, characterizing the equilibrium income

mapping requires non-homothetic preferences. Indeed, empirical evidence suggests that hous-

ing expenditure shares decline with income (Albouy et al., 2016). Furthermore, homothetic

preferences such as the Cobb-Douglas or the CES must be ruled out because they generate

multiple equilibria in a model that comprises a continuum of heterogeneous households and a

continuum of locations. Using Stone-Geary preferences, we establish the following two results.

In the �rst place, there exists a unique spatial equilibrium. Households with di¤erent incomes

always choose locations with di¤erent characteristics, but households sharing the same income

may live in separated neighborhoods. In the second one, we �nd a location-quality index whose

behavior re�ects the properties of the equilibrium income mapping. This index is built from the

primitives of the model, as its value at any particular location is pinned down by the amenity

endowments and households�commuting behavior. It is worth stressing that these results are

not speci�c to Stone-Geary preferences. They hold true for other non-homothetic preferences;

what changes is the functional form of the location-quality index.

The upshot is that the bliss point is the global maximizer of the location-quality index over

the topological network, thus implying that this location is occupied by the a­ uent because they

propose the highest bid. As one moves away from this location along all admissible directions,

households are sorted by decreasing incomes until a local minimizer of the location-quality

index is reached where poorest households are located. Around this minimizer, household

income starts rising. As a result, households get more exposure to other social groups when

the number of turning points of the location-quality index rises.

Fourth, our model is �exible enough to determine analytically the equilibrium outcome

when incomes and the location-quality index are Fréchet-distributed. The so-obtained mapping

between the location-quality index and income can be straightforwardly estimated using real-life

data.

We aim to test the income mapping as to investigating whether the two main forces in our
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theoretical model �amenities and commuting costs �also drive income sorting in practice. We

estimate a reduced-form version of our model for the Netherlands. The choice of the Netherlands

is motivated by (i) the availability of large disaggregated data sets and (ii) the fact that the

public services that underpin social cohesion (e.g., education and health) are centrally �nanced

and/or administered (Ritzen et al., 1997). First, we have access to rich microdata for more

than 10 million households covering the years 2010 to 2015 on incomes, residential and job

locations at the household level, employment accessibility, as well as land values and amenities

at each location. Second, the central provision of education implies that the quality of schools,

which is a major determinant of residential choices in many U.S. metropolitan areas, is much

less of an issue in the Netherlands.

Dutch cities, which were established long ago, are known to o¤er a high quality of life, which

is at least partly due to the presence of amenity endowments. Despite being a small country,

the Netherlands hosts no less than 8 UNESCO world heritage sites, which is almost as much

as London and Paris together, while it hosts 61; 908 listed buildings, which is more than three

times the number of listed buildings in Greater London. With a population density of 407:4

pop/sq km, the Netherlands is almost as dense as the San Francisco Bay area whose area is

similar to that of the Netherlands. This is an important feature in spatial settings where density

economies matter. By focusing on the whole country rather than a subset of metropolitan areas,

we are able to capture relationships that are deployed within the entire Dutch urban system,

from the large cities to the small villages.

It is well known that measuring the quality of amenities is a hard task. In this paper, we use

a proxy suggested by Ahlfeldt (2013) and Saiz et al. (2018): the number of outside geocoded

pictures taken by residents at a certain location. One key advantage of this index is that it

lets consumers choose the aesthetic quality of buildings and locations they like best by �voting

with their clicks� (Carlino and Saiz, 2019). This allows us to move beyond the approach of

de�ning amenities implicitly, as in Ahlfeldt et al. (2015) and Albouy (2016). We show the

robustness of our results by using a completely di¤erent proxy for amenities based on a hedonic

price approach developed by Lee and Lin (2018), using variations in housing prices.

Since there is no proxy that perfectly captures the full amenity potential at a certain lo-

cation, amenities are measured with error. Employment accessibility is also likely to be en-

dogenous due to correlation with unobservable household characteristics and agglomeration

economies �the latter being more prevalent in dense areas where commutes are shorter. We

address the endogenous nature of amenities and accessibility in our econometric analysis in

several ways, e.g., by obtaining Oster�s (2019) bias-adjusted estimates and by constructing his-

toric instruments. Since the strategy of using instruments based on historic data raises several

issues, we devote considerable attention to the validity of such an identi�cation strategy.
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In a �rst step, we show that picture density is strongly correlated to the presence of amenity

endowments, such as the density of historic listed buildings and the presence of water bodies.

We then show that both amenities and commuting costs are important in determining the

spatial income mapping. More speci�cally, we �nd that doubling the amenity level attracts

households whose incomes are 2:6% higher, while doubling commuting time leads to households

whose incomes are 15% lower. Hence, the impact of commuting time seems to be somewhat

stronger than the impact of amenities. We also �nd a strong impact on land prices: doubling

amenities leads to an increase in land prices of 13% , which is sizable.

Thus, our results unambiguously suggest that both amenities and commuting costs are

important in determining the spatial income distribution. Nevertheless, commuting costs seem

to be a more important driver of income sorting than amenities. Hence, our results support

the emphasis put on commuting costs in standard models of urban economics. However, our

results also show that the featureless model of urban economics is far too restrictive to explain

the city structure. Yet, focusing on amenities only is unwarranted because commuting costs

are too important to be disregarded. A relevant theory of the space-economy must account

explicitly for both amenities and commuting costs.

Related literature. Suggesting the complexity of the issue, only a handful of papers in ur-

ban economics have studied the social strati�cation of cities with heterogeneous households.

Beckmann (1969) was the �rst attempt to take into account a continuum of heterogeneous

households in the monocentric city. Unfortunately, the assignment approach used by Beck-

mann was �awed (Montesano, 1972). Hartwick et al. (1976) and Fujita (1989) proposed a

rigorous analysis of the residential pattern for a �nite number of income classes in a featureless

monocentric city when commuting costs do not depend on income.

In an important paper, Ahlfeldt et al. (2015) highlight the role of amenities, agglomeration

economies and commuting in residential location choices in their study of the internal structure

of Berlin. Our paper di¤ers from theirs in two fundamental aspects. First, these authors do

not provide any properties of the spatial equilibrium. This should not come as a surprise

as characterizing the equilibrium outcome is problematic under a �nite location set. Second,

Ahlfeldt et al. (2015) �nd that the elasticity of amenities with respect to residential density

is 0:15, which is quite high. This is so mainly because amenities are measured as �structural

residuals�, meaning that it is unclear what these amenities actually capture (e.g., they may

capture housing characteristics or sorting on unobserved household characteristics).

Diamond (2016) considers two skill-groups of workers endowed with Cobb-Douglas pref-

erences to study skill sorting across cities in a Roback-like model. However, she disregards

workers�residential choices within cities. Tsivanidis (2019) also considers two skill-groups in
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a closed-city setting. Like us, he uses Stone-Geary preferences because the observed Engel

curves are nonlinear. However, unlike us, these authors do not aim to characterize the spatial

equilibrium of their models. Using a dynamic setting, Lee and Lin (2018) showed that richer

households are anchored in neighborhoods with better natural amenities. We di¤er from them

in at least one fundamental aspect: in their setting people are assumed to work where they live.

In our setting, households are free to choose where to live and where to work, while accounting

explicitly for commuting costs between the residence and the workplace.

Couture et al. (2019) undertake a rich analysis of the impact of income inequality on the

internal structure of American cities with di¤erent types of amenities. We depart from them

by assuming a variable lot-size, which allows us to determine the spatial income mapping in a

�ner way. Note also the link with the literature on local public goods and schools which focuses

on household sorting across heterogeneous jurisdictions (Epple and Sieg, 1999). However, these

contributions disregard commuting within jurisdictions, and thus do not study the trade-o¤

between amenities, commuting to jobs and housing prices, which occupies center stage in our

approach.

The remainder of the paper is organized as follows. We provide a detailed description of our

model in Section 2. In Section 3, we show how the bid rent function may be used to determine

the social strati�cation of the city. In Section 4, we study the properties of the residential pattern

for preferences that generate a location-quality index. Since the equilibrium is undetermined

under homothetic preferences, we illustrate our results for Stone-Geary preferences. Data are

discussed in Section 5. Section 6 presents identi�cation strategy and reduced-form empirical

results on the impact of amenities and commuting time on income sorting. In Section 7, we

summarize our main results and discuss the role of endogenous amenities.

2 The model

2.1 The spatial economy

The economy involves a unit mass of income-heterogeneous households. A household�s gross

income is given by ! units of the numéraire, with ! 2 [!; �!] and 0 < ! � �!. The income

c.d.f. F (!) and density f(!) are continuous over [!; �!]. We are agnostic about the reasons

that explain inequality in earnings.1

The economy involves two normal consumption goods: (i) land h, which is a proxy for

housing, and (ii) a homogeneous �nal consumption good q. Shipping the �nal good within the

economy is costless. Therefore, its price is the same across locations. This good is used as the

1In Gaigné et al. (2020), we discuss how incomes can be determined from the interaction between individual

skills and local productivity factors.
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numéraire. The land density at each location of the network is 1 while the opportunity cost of

land is given by the constant R0 � 0.
The map formed by streets, roads, highways, and railway junctions (in a city, region or

country) is modeled by means of a topological network. A topological arc, denoted a� , is

the image in R2 of a compact interval of R by a continuous one-to-one mapping. Clearly,

any arc linking two distinct locations contains a continuum of locations. A topological network

N = [T�=1a� is de�ned as the union of a �nite number of topological arcs. Each arc has a �nite
length. Furthermore, N is such that for any two points x1 and x2 belonging toN there is at least

one concatenation of arcs and subarcs of N that links these two points. The distance d(x1; x2)

between x1 and x2 is given by the length of the shortest path that connects these locations.

Clearly, d(�) is a metric de�ned on N . The endpoints of the arcs are called vertices. We assume
that these vertices are not colinear, so that (N; d) is not a one-dimensional metric space. An

example of transportation networks similar to ours can be found in Allen and Arkolakis (2014).

When all the vertices are colinear, the network boils down to the standard linear space. In

what follows, we assume that all functions are di¤erentiable along each arc of the network N ,

except maybe at the vertices of N .

2.2 Consumption

Households share the same utility function. Since households prefer more amenities than less,

we consider a preference structure similar to the one used in models of vertical product di¤er-

entiation:

U(q; h; b) = b � u(q; h); (1)

where b denotes the amenity level, q the costlessly traded numéraire, and h the land consumption

while u is a well-behaved utility function. Let b(x) > 0 be a given function whose value expresses

the amenity level (or, equivalently, an aggregator of distinct amenities) available at x 2 N ,

which are exogenous and intrinsic to a location. In the featureless city of urban economics, b(x)

is constant across locations. In this paper, b(x) varies with x. Preferences (1) imply that the

amenity b and the private goods (q; h) are substitutes. In addition, the utility level associated

with the consumption of a given bundle (q; h) increases with the amenity level b, while the

utility derived from consuming amenities rises with income. Hence, a high-income household

needs more numéraire than a low-income household to be compensated for the same decrease in

amenity consumption. As a result, the single-crossing condition between incomes and amenities

holds. However, as will be seen, the single-crossing condition between incomes and locations

does not hold: richer households need not always choose locations with more amenities.

There is a given and �nite number of employment centers i 2 N with i = 1; :::; n. The

individual loss due to commuting is modeled as an iceberg cost. More speci�cally, if a household
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resides at x and works at i, we denote by 0 < ti(x) � 1 its e¤ective number of working units,
which decreases with the distance d(x; i). As a result, the individual�s net income is equal

to !ti(x) and her commuting cost by ci(!; x) = ! � !ti(x), which increases with both her

earning ! and the distance d(x; i). In other words, commuting is considered here as an income

loss. This modeling strategy captures the fact that individuals who have a long commute are

more prone to being absent from work, to arrive late at the workplace and/or to make less

work e¤ort (Van Ommeren and Gutiérrez-i-Puigarnau, 2011). An iceberg commuting cost is

also consistent with the empirical literature that shows that these costs increase with income

because the opportunity cost of time increases with income (Small, 2012).

A household earns the same gross income ! regardless of its employment center i. When a

household chooses her residential location x , she knows the corresponding e¤ective number of

working time units given by a function 0 < t(x) < 1. For example, if the household is free to

choose where to work, she chooses the employment center that maximizes her working time,

that is, t(x) � maxi ti(x).2 Alternatively, the household may know her employment location j
before selecting her residential location x. In this case, we have t(x) = tj(x).3

Regardless of the speci�cation chosen for t(x), the household�s budget constraint is as fol-

lows:

!t(x) = q +R(x)h; (2)

where R(x) is the land rent at x. In line with the literature, we assume that the land rent is

paid to absentee landlords (Fujita, 1989).

Maximizing the utility U of a !-household residing at x and working at ei with respect to

q and h subject to (2) yields the numéraire demand

q�(x; !) � q(R(x); !t(x)) = !t(x)�R(x)h(R(x); !t(x))

and the housing demand h�(x; !) � h(R(x); !t(x)), which is the unique solution to the equa-

tion:4

uh [!t(x)�R(x)h�; h�]�R(x)uq [!t(x)�R(x)h�; h�] = 0: (3)

2In this case, the function t(x) is not di¤erentiable at the intersection points between any two functions

ti and tj . If the equilibrium arises at a point where t is not di¤erentiable, the �rst-order conditions must be

rewritten by using the tools of subdi¤erential calculus. This does not a¤ect the meaning of our results but

renders the exposition heavy. For this reason, we will assume throughout that all functions are as many times

continuously di¤erentiable as necessary.
3Our model can be extended to the case where !-households�net incomes are given by !ti(x)�kxi , where

the random variables �kxi are i.i.d. shocks on commuting which are speci�c to the household k and locations x

and i. In this case, the function t(x) is given by E [maxi ti(x)�kxi] and households located at x distribute their
commuting among employment centers according to a gravity equation (Gaigné et al., 2020).

4For any function f(y; z), let fy (resp., fyz) be the partial (cross-) derivative of f with respect to y (resp., y

and z).
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2.3 The residential equilibrium

Given an amenity function b(x), a given mass of heterogeneous households choose where to live,

how much land and how much of the composite good to consume. The !-households may be

distributed over several locations. Let !(x) be the mapping fromN to [!; �!] that speci�es which

!-households are located at x 2 N while s(x; !) 2 [0; 1] is the share of the !-households who
reside at x. The land market clearing condition holds if !(x) satis�es the following condition:

js(x; !(x))f(!(x))h�(x; !(x))d!j = dx: (4)

This condition states that the amount of land available between any x and x+dx > x along

a topological arc while the subarc occupied by the households whose income varies from ! to

!+d! are the same. Since !(x) need not be monotonic, the land market clearing condition is

expressed in absolute value.

Last, the population constraint impliesZ
N

s(x; !(x))f(!(x))h�(x; !(x))dx = 1: (5)

A residential equilibrium is such that no household has an incentive to move, all households

sharing the same income have the same maximum utility level, and the land market clears.

Formally, a residential equilibrium is de�ned by the following vector:

(!�(x); s�(x; !�(x)); R�(x); h�(x; s�(x)); q�(x; s�(x)))

with x 2 N , such that

b(x) � u[q�(x; !�(x)); h�(x; !�(x))] � b(y) � u[q�(y; !�(x)); h�(y; !�(x))] for all x; y 2 N

holds under the budget constraint (2), the land market clearing condition (4), and population

constraint (5).

If the above inequality is strict for all y 6= x, then all !�(x)-households are located at

x (s�(x; !�(x)) = 1). Otherwise, there exist at least two locations x1 and x2 such that the

!�(x)-households are indi¤erent between the locations x1 and x2. In this case, we have 0 <

s�(�; s�(x)) < 1 at x1 and x2, while the sum of the shares is equal to 1. Hence, there is spatial

splitting of identical households.

Our problem has the nature of a matching problem between landlords and households.

However, for the matching between households and locations to be imperfect, the rule x(!)

which assigns a particular income to locations must be a correspondence. For example, for

the same given housing consumption, a household can be indi¤erent between living close to its

employment center while having a low level of amenities, or living far from the center while
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enjoying a high level of amenities. Therefore, apart from special cases, there is no one-to-one

correspondence between the income and location sets.

Since x(!) is a correspondence, it seems hopeless to guess what the equilibrium assignment

could be, as typically done in Sattinger-like assignment models. By contrast, it is yet unnoticed

that the reverse problem can be solved. Indeed, because households bid for locations, we will

show that those who reside at the same location x must share the same income. Therefore, we

may de�ne and characterize the income mapping !�(x) from the location set N to the income

set [!; �!] that speci�es which !-households are located at x. Evidently, this income is that of

the households who make the highest bid (Fujita, 1989).

3 The residential equilibrium with amenities

Since u is strictly increasing in q, the equation u(q; h) = U=b(x) has a single solutionQ(h; U=b(x)),

which describes the consumption of the numéraire when the utility level is U=b(x) and the land

consumption h. The bid rent 	(x; !;U) of a !-household is the highest amount it is willing to

pay for one unit of land at x when its utility level is given and equal to U . Formally, the bid

rent function is de�ned as follows:

	(x; !; U) � max
q;h

�
!t(x)� q

h

���� s.t. b(x) � u(q; h) = U

�
= max

h

!t(x)�Q(h; U=b(x))

h
: (6)

When space is di¤erentiated, since the bid rent 	(x; !; U) is such that the !-households are

indi¤erent across locations, (3) implies that the Alonso-Muth condition for the !-households is

as follows:

h�(x; !)Rx(x; !; U)� !tx(x) =
bx(x)

b(x)

u(q�(x; !); h�(x; !))

uq(q�(x; !); h�(x; !))
:

Since each household treats the utility level parametrically, applying the �rst-order condition

to (6) yields the equation:

Q(h; U=b(x))� hQh(h; U=b(x))� !t(x) = 0 (7)

whose solution, denoted H(!t(x); U=b(x)), is the quantity of land consumed at x when the

household pays its bid rent 	(�); which is called the bid-max lot size (Fujita, 1989).5

The budget constraint implies that the bid rent function may be rewritten as follows:

	(x; !; U) � !t(x)�Q(!t(x); U=b(x))

H(!t(x); U=b(x))
: (8)

5As shown by Fujita (1989), (7) may have several solutions. Our results hold true for any solution.
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This expression shows that a household�s bid rent at x depends separately on both b(x) and

t(x) while its housing consumption H also varies with these two attributes of location x. Since

land is allocated to the highest bidder, the equilibrium land rent is given by the upper envelope

of the bid rent functions:

R�(x) = max

�
max
!2[!;�!]

	(x; !; U�(!)); RA

�
;

where U�(!) denotes the maximum utility reached by the !-households at the residential equi-

librium. The bid rent function implies that all households residing at a particular location x

share the same income !�(x). Hence, two households endowed with di¤erent incomes choose

to reside in two di¤erent locations. Note that H(�) is the equilibrium housing consumption at

x of a !-household when its bid rent is equal to the land rent.

Since land is allocated to the highest bidder, the income !�(x) of the households who locate

at x must solve the utility-maximizing condition:

@	(x; !; U�(!)))

@!
= 0; (9)

while the second-order condition implies @2	=@!2 < 0. Characterizing the class of utilities

u(q; h) and commuting costs t(x) for which this condition holds would require technical de-

velopments which are beyond the scope of this paper. Importantly, we will show that this

assumption holds for Stone-Geary preferences.

Totally di¤erentiating (9) with respect to x yields:

d!�

dx
= �

�
@2	(x; !; U�(!))

@!2

��1
� @

2	(x; !; U�(!))

@!@x
; (10)

which implies that 	x!(x; !; U�(!)) and d!�(x)=dx have the same sign.

Set

B(x) � bx(x)

b(x)
T (x) � �tx(x)

t(x)
;

and

"U;! �
!

U�
U�! "H;! �

!

H
(H! +HUU

�
!) "uq ;! �

!

uq

@uq
@!

:

We are now equipped to characterize the equilibrium income mapping.6

Proposition 1. The equilibrium mapping !�(x) is increasing (decreasing) at x if

�(x; !) �
�
1�

"H;! + "uq ;!

"U;!

�
B(x)� (1� "H;!)T (x) (11)

is positive (negative) at this location.

Proof. The proof is given in Appendix A.1. �
6When no ambiguity may arise, we do not specify the independent variables in the following equations.
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The expression (11) shows that for any given function u the interaction between the amenity

and commuting cost functions determines the social strati�cation of the city through the be-

havior of the function �. It also shows that the sign of �, whence the slope of the spatial income

distribution, changes at any solution !�(x) to the equation �(x; !) = 0 if �x(x; !) 6= 0.
To illustrate, consider the benchmark case of a monocentric, linear and featureless city [0; L]

where b(x) = 0 and tx(x) > 0 for all x since the CBD is at x = 0. We know from Fujita (1989)

that household locations are determined by ranking the bid rent slopes with respect to income.

It follows from (11) that the sign of �(x; !) depends on whether the income elasticity of the

bid-max lot size is smaller or larger than 1 (Wheaton, 1977). Since the empirical evidence

shows that the expenditure share allocated to housing declines as income rises, the income

elasticity of housing is smaller than 1 (Albouy et al., 2016). Therefore, when income increases,

the slope of the bid rent function gets steeper. A longer commute shifts the utility of a high-

income household downward more than that of a low-income household because the former

has a higher opportunity cost of time than the latter. However, this e¤ect is not o¤set by the

higher housing consumption because the income elasticity of housing is smaller than 1. By

implication, at the residential equilibrium, households are sorted by decreasing order of income

as the distance to the CBD increases.

Consider now the case of a featureful monocentric and linear city (B(x) 6= 0). Owing to the
existence of amenities, even when the bid rent functions are downward sloping, the equation

�(x; !) = 0 may have several solutions. In this case, there is imperfect sorting, that is, greater

income di¤erences are not mapped into more spatial separation. The following three cases may

arise.

(i) Assume that �(x; !) > 0 for all x. As ! rises, the bid rent curve becomes �atter. Since

the bid rent of a high-income household is always �atter than that of a low-income household,

individuals are sorted out by increasing income. In other words, the richer the household, the

closer to the city limit. Consumers are willing to pay more to reside at a distant location

because the corresponding hike in amenity consumption is su¢ cient to compensate them for

their longer commute (Fujita, 1989).

(ii) If �(x; !) < 0 for all x, the bid rent curve becomes steeper as the income ! rises.

Therefore, the bid rent curves associated with any two di¤erent incomes intersect once and,

for each !, there exists a unique x(!) such that s(x(!); !) = 1. In this case, x = 0 is the

most-preferred city location. To put it di¤erently, the utility loss incurred by an increase in

distance to the workplace is exacerbated by a drop in the consumption of central amenities

(Brueckner et al., 1999).

(iii) The most interesting case arises when �(x; !) changes its sign over [0; L] because, as

shown in Section 2, the slope of the income gradient changes, so that the bid rent functions
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may intersect several times. In this case, there is imperfect sorting: household income rises over

some range of sites and falls over others. We develop this argument in more detail in the next

section.

The expression (11) highlights the fact that the impact of the amenity and commuting

cost functions on the sign of �(x; !) depends on the elasticities "H;!, "uq ;! and "U;!. When the

utility u(q; h) is speci�ed, the condition (11) may be used to determine how households are

distributed according to the behavior of B(x) and T (x) by calculating those elasticities. In the

limit, when the elasticities are constant, the sign of (11) is independent of income, and thus

there is perfect sorting. Note that T (x) = 0 when commuting is not accounted for, like in most

models of local public �nance. In this event, the sign of �(x; !) is determined by the sign of�
1�

�
"H;! + "uq ;!

�
="U;!

�
B(x).

4 The social structure under Stone-Geary preferences

4.1 Non-homothetic preferences

In this section, we characterize the equilibrium mapping !�(x) and the equilibrium land rent

R�(x) for preferences u(q; h) that reduce the dimensionality of the matching problem.

It is common place to work with homothetic preferences, as they include the CES, Cobb-

Douglas and translog. Here, there are at least two reasons to rule out such preferences. First,

using homothetic preferences implies that the elasticity of the housing demand is constant in

price and income, which contradicts its variability across heterogeneous consumers (Albouy et

al., 2016). Second, when the utility u is homogeneous linear, we show in Appendix A.2 that

"U;! = "H;! = 1 and "uq;! = 0, so that (11) yields �(x; !) = 0 for all x. In other words, there

exists a continuum of residential equilibria under homothetic preferences.

For these reasons, we consider Stone-Geary preferences, which obviate the multiplicity of

equilibria and account for the plausible assumption of a minimum lot size h > 0:

u(q; h) = q1��(h� h)�; (12)

where 0 < � < 1. Maximizing (12) with respect to q and h subject to (2) leads to the following

demands for the numéraire:

q�(x; !) = (1� �)[!t(x)�R(x)h]

and for housing:

h�(x; !) = (1� �)h+ �
!t(x)

R(x)
: (13)
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Thus, the demand for housing at any location x increases less than proportionally with

income (Albouy et al., 2016). Note that the housing demand is perfectly inelastic when � = 0,

which corresponds to the assumption of a �xed lot size.

Under (12), we show in Appendix A.3 that the sign of 	x! is the same as that of

B(x)� (1� �)T (x); (14)

which accounts for the presence of amenities and commuting costs, as well as for the relative

intensity of preferences for housing through the parameter �.

Set

�(x) � b(x)[t(x)]1��; (15)

which subsumes the amount of time devoted to work and the amenity level at x into a single

scalar, which has the nature of a location-quality index. Note that this index depends on location

x but not on income !�(x). The higher �, the stronger the preference for housing. In other

words, as the intensity of preference for housing increases, commuting matters less than the

accessibility to amenities. More importantly, di¤erentiating (15) shows that �x(x) and �(x; !)

have the same sign. Hence, �(x; !) changes sign at any extrema of the location-quality index.

We assume without much loss of generality that b(x) and t(x) are such that �(x) is never �at

on a positive measure interval.

Although we assume Stone-Geary preferences, our results hold true whenever the location-

quality index �(x) is a function of b(x) and t(x) which is independent of !. To illustrate,

consider u(q; h) = q�1+h�2 with 0 < �i < 1 and �1 6= �2. The elasticity of substitution between

land and the numéraire is variable and equal to 1=(1� �1�1� �2�2) where �i is the expenditure
share on good i = 1; 2. When �1 > �2, i.e., the composite good matters more than land, it can

be shown that the above preferences generate the index �(x) � [b(x)]1=�1 t(x), which is similar
to (15).

4.2 The spatial income distribution

Our objective is now to determine the mapping !�(x) from N to [!; �!] that speci�es which !-

households are located at x under (12). Since housing consumption is chosen optimally at each

x, what makes a site attractive to households is both its amenity level and the corresponding

working time. The next proposition shows that incomes are distributed within the location

set N according to the values of the location-quality index. To show this, we �rst rank the

values of �(x) by increasing order and denote by G(�) the corresponding c.d.f. de�ned over

the domain [�;�] where � (� ) is the minimum (maximum) value of �(x) over N .

The following proposition is proved in Appendix A.4.
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Proposition 2. Assume Stone-Geary preferences. Then, (i) each location hosts at most

one household type; (ii) there exists a unique residential equilibrium; (iii) the equilibrium in-

come mapping !�(x) and the location-quality index �(x) vary together with x; and (iv) the

equilibrium income mapping is given by

!�(x) = F�1[G(�(x))]: (16)

In Appendix A.4, we also show that the equilibrium utility level satis�es the Spence-Mirrlees

condition, thus implying the existence of a positive assortative matching between incomes and

the values of the location-quality index. Consequently, it is su¢ cient to study how �(x) varies,

rather than b(x) and t(x) separately, to determine the properties of the residential equilibrium:

the initial two-to-one matching is reduced to a one-to-one matching. Stated di¤erently, there

is a unique one-to-one and increasing relationship between ! and � (Chiappori, 2017). Hence,

the highest income households locate where the location-quality index � reaches its maximum.

As �(x) starts decreasing with x, the income level of the corresponding residents also decreases.

The lowest income households reside at a global minimizer of the location-quality index. Around

this location, the income level rises together with �. As a result, income sorting does not

translate into spatial sorting because the function �(x) is in general not monotonic in x. In

other words, we have:
@

@x

dU�

d!
? 0:

For example, in a monocentric city, a wider income gap is no longer matched with a greater

distance between two households.

In the absence of amenity e¤ects (b(x) is constant), households�residential choices are driven

only by the distance to employment locations. Since the more productive workers have a higher

bid rent, they will disproportionately choose residential locations in the neighborhood of the

employment centers. By contrast, unevenly distributed historic and natural amenities are likely

to attract the high-income people away from the employment centers. In sum, the spatial

sorting of income-heterogeneous households is governed by the location-quality index.

To illustrate, consider Figure 1. The centrality of the city is described by the unique global

maximizer x = 0 of �(x) over [0; L] because this site is endowed with the best combination

of amenities and commuting costs. Proposition 2 implies that this location is occupied by the

richest households, while households are sorted by decreasing income over [0; x1) where x1 is a

minimizer of �. Since x1 is the unique global minimizer of �(x), this location is occupied by

the poorest households. As the distance to the CBD rises, �(x) increases. This implies that

households are now sorted by increasing income up to x2 where �(x) reaches a local maximum.

Over the interval (x2; L], the function �(x) falls again, which means that households�income

decreases with x.
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Since �(0) > �(x2) > �(L) > �(x1), the intermediate value theorem implies that z1 in

[0; x1), z2 in (x1; x2) and z3 in (x2; L] exist such that �(z1) = �(z2) = �(z3). Proposition 2

implies that the households residing at these three locations have the same income. In other

words, there is spatial splitting because the households sharing the income !�(zi) do not live

in the same neighborhood. On the contrary, they are spatially separated by households having

lower incomes in (z1; z2) and higher incomes in (z2; z3). Roughly speaking, Figure 1 depicts a

spatial con�guration where the middle class is split into two spatially separated neighborhoods

with the poor in between, while the a­ uent live near the city center. Such a pattern describes

more accurately the spatial distribution of incomes in �old�US cities and in many European

cities, than the homogeneous monocentric city model (Glaeser et al., 2008).

[Figure 1 about here]

More generally, assume that the location-quality index has n extrema. If n = 2 there is

perfect sorting because � has a unique maximizer and a unique minimizer. When n > 2, the

spatial separation between households is no longer the mirror image of their income di¤erences.

The residential pattern is partitioned into neighborhoods whose borders are de�ned by the

adjacent extrema of the location-quality index and size depends on the behavior of the index.

When z is a maximizer of �, then the locations x1 < z < x2 with �(x1) = �(x2) < �(z)

are in general such that d(x2; z) 6= d(x1; z) because � is not symmetric. In other words, the

households whose income is !�(x1) = !�(x2) are not located equidistantly about z. The same

holds when z is a minimizer of �. Therefore, unlike Tiebout�s prediction, identical or similar

households may live in spatially distinct areas.

The equilibrium values of the shares s(x; !(x)) are determined as follows. If z1 6= z2::: 6= zn

exist such that �(z1) = �(zj) for j = 2; :::; n, it follows from Proposition 2 that !�(z1) = !�(zj)

for j = 2; :::; n. Since H(!t(x); U=b(x)) � H(!;�(x); U) depends only on � under Stone-Geary

preferences and f(!�(z1)) = f(!�(zj)) for j = 2; :::; n, we get (see Appendix A.4):

s(z1; !
�(z1)) = s(zj; !

�(zj)) j = 2; :::; n:

Furthermore, it must be that

nX
i=1

s(zi; !
�(zi)) = 1:

The unique solution to these n linear equations is s(zi; !�(zi)) = 1=n for i = 1; :::n (see

Appendix A.4 for a more detailed proof). That is, the households who share income !�(z1) are

equally split across the locations that generate the same location-quality index �(z1).

Before proceeding, it is worth explaining in more details how the arguments developed

above are used to determine the residential equilibrium along the network N . Amenities and
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commuting costs are distributed along each topological arc a� . The location-quality index at

x 2 a� is speci�c to each topological arc and given by �(x; a� ) = b(x; a� )[t(x; a� )]
1��. A

household chooses the arc a� and the location x 2 a� that maximize her utility. Households

ordered by decreasing incomes are assigned to arcs and locations by decreasing values of the

location-quality index. Note that !-households can reach their highest utility for several pairs of

arcs and locations. In other words, households sharing the same income may occupy separated

locations along the same topological arc or locations belonging to di¤erent arcs.

4.3 Land rent

It remains to characterize the equilibrium land rent. We show in Appendix A.5 that the equi-

librium land rent is given by the following expression:

R�(x) =
!�(x)t(x)

H[�(x); !�(x); U�(!�(x))]

�
1� 1� �

"U;!(x)

�
; (17)

where

"U;!(x) = (1� �)
!�(x)t(x)

q�(x)
=

!�(x)t(x)

!�(x)t(x)� hR�(x)
> 1:

Substituting "U;!(x) in (17) and rearranging terms, we obtain:

R�(x) =
�!�(x)t(x)

H[�(x); !�(x); U�(!�(x))]� (1� �)h
> 0; (18)

where we assume that � > 0 for the numerator and denominator to be strictly positive.

By totally di¤erentiating (17) with respect to x, we obtain (see Appendix A.5):

R�x(x) =
!�(x)t(x)

H[�(x); !�(x); U�(!�(x))]

�
1

"U;!(x)
B(x)� T (x)

�
: (19)

Since "U;!(x) > 1, the above expression implies that the land rent gradient is always negative

if B(x) � T (x) < 0 for all x. As x rises, the decreasing land rent compensates the households

!�(x) located at x for bearing higher commuting costs and being farther away from places

endowed with more amenities. For example, in the standard monocentric city model in which

B(x) = 0 and T (x) > 0 the land rent gradient is always negative.

When B(x) � T (x) > 0 over some interval [x1; x2], the land rent gradient can be positive

or negative according to the value of "U;!(x). Since household income increases over [x1; x2],

commuting costs also increase over this interval. Therefore, the land rent is a priori neither

monotonic nor the mirror image of the spatial income distribution. However, R�(x) is upward

sloping whenB(x)�"U;!(x)T (x) > 0. In this case, moving toward locations with more amenities
(B(x) > 0) is su¢ cient for the land rent to increase. In short, the interaction between amenities,

commuting and income sorting may give rise to a wealth of land rent pro�les, which generally

di¤er from that of the location-quality index alone.
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4.4 From theory to data

To derive testable predictions about the e¤ects of amenities and commuting costs on the in-

come distribution within the city, we have to determine the explicit form of the income mapping

!�(x) = F�1[G(�(x))]. For this, we must specify the distributions F and G. Earning distri-

butions are skewed to the right and the Fréchet distribution is a good candidate to capture

this. Equally important, the Fréchet distribution leads to an analytical solution of our model.

In the following, we assume that incomes are drawn from a Fréchet distribution with the shape

parameter 
! > 0 and the scale parameter s! > 0: F (!) = exp [�(!=s!)�
! ] over [0;1). An
increase in 
! leads to less income inequality. It is analytically convenient to assume the values

of � are also drawn from a Fréchet distribution with the c.d.f. G(�) = exp [�(�=s�)�
� ] over
[0;1); the density is denoted g(�). The location-quality index covers a wider range of values
when 
� decreases.

7

Using (16), the mapping !�(x) can then be retrieved from the condition:Z 1

!�
f(y)dy = 1� exp(�(!�=s!)�
!) =

Z 1

�

g(�)d� = 1� exp(�(�=s�)�
�);

which is the counterpart in the �-space of the land market clearing condition (4).

Setting 
 � 
�=
s and solving the above equation yields the equilibrium income mapping:

!�(x) = s!

�
�(x)

s�

�

: (20)

Last, we show in Appendix A.6 that the equilibrium land rent at x is given by

R�(x) = �(1� �)
1��
� k�

1
� t(x) [�(x)]

1
�

�
�t(x)

R�(x)
+
(1� �)h

!�(x)

� 1
(1��)�


; (21)

where k is a positive constant.

Toward an econometric speci�cation. In the data, amenities and commuting costs are

functions de�ned over a two-dimensional space. However, after having calculated the values of

these functions at each location, we can collapse the two dimensions into one and order locations

along the real line. In doing so, we run the risk of attributing di¤erent values of amenities and

commuting costs to the same location. Since the number of locations in the dataset is discrete,

the probability of such an event is zero. In this case, we can use the equilibrium mapping (20)

to quantify the sorting consequences of the spatial distribution of amenities.

Assume that labor time is given by t(x) �  (x)[�(x)]��, where �(x) is the commuting

time, � > 0 is the elasticity of labor time with respect to commuting time, and  (x) is the

7Note that we obtain similar expressions with a Pareto distribution. The main di¤erence is that the Fréchet

gives us one more degree of freedom than the Pareto in the estimations.
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given number of working hours per year of the household residing at x.8 In this case, the

location-quality index becomes:

�(x) = [b(x)]� [ (x)]1�� [�(x)]��(1��): (22)

It follows from (20) that the income mapping is given by the following expression:

!�(x) = s!

(
[b(x)]� [ (x)]1�� [�(x)]��(1��)

s�

)

:

Let ~!(x) be the gross hourly income of a household observed in the data:

~!(x) = (!�(x)= (x))�(x) (23)

where the �(x) are hourly labor income shocks that are independently and identically distributed

according to some given distribution de�ned on [0;1). Taking the log of (23), we obtain:

log ~!(x) = �0 + �1 log b(x) + �2 log �(x) + �3 log (x) + ~�(x); (24)

where �0 � log (s!=s
�), �1 � �
, �2 � ��(1� �)
 and ~�(x) � log �(x). Note that we refrain
from interpreting �3 as being equal to (1��)
 because the number of working hours may have
a direct e¤ect on income, e.g., by working hard in order to get a wage raise (Bell and Freeman,

2001). At the same time, changes in wages may a¤ect labor supply.

5 Data and descriptives

5.1 Datasets

We have gained access to various nationwide non-public microdata from Statistics Netherlands

between 2010 and 2015. Unlike the United States or the United Kingdom, the Netherlands

does not undertake censuses to register their population, but the register is constantly updated

when people move or when there are changes in the household composition. The �rst dataset we

use is the Sociaal Statistisch Bestand (SSB), which provides basic information on demographic

characteristics, such as age, country of birth, marital status, and gender. We only keep people

that could be part of the working population, that is, those between 18 and 65 years and

aggregate these data to the household level. Importantly, the SSB data enable us to determine

where households reside, up to the postcode level. Hence, space is discrete in the plane.

8We are agnostic about the reasons that explain why  varies with x. According to Rosenthal and Strange

(2008), professionals work longer in denser areas, while Black et al. (2014) observe that married women work

more when commutes are shorter.
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The data on yearly income of households is are obtained from the Integraal Huishoudens

Inkomen panel dataset. These data are based on the tax register, which provides information

on taxable income, tax paid, as well as payments to or bene�ts from property rents or dividends.

The income data also provide information on whether households are homeowners or renters.

More than 65% of the rental sector applies to public housing. Public housing is rent controlled

and there are often long waiting lists for public housing. So, households are not entirely free to

choose their utility-maximizing location. Therefore, we will focus on owner-occupied housing,

which means that we keep about 70% of the data.9

To estimate the commuting time for each household, we use the tax register information,

which provides information on individual jobs and the number of hours worked in each �rm

for each year. Using data on location information on each establishment from ABR Regio and

network travel time from SpinLab, we calculate for each household the average commuting time.

More information on how we calculate the commuting time between locations is provided in

Appendix B.1.

A location is given by a neighborhood (which is a postcode 4-digit location) as de�ned by

Statistics Netherlands. There are 4; 033 neighborhoods; the median size of a neighborhood is

only 528ha while the average population is about 4; 000. Information on land values and lot

sizes is not directly available. As is common practice, we infer them from data on housing

transactions, provided by the Dutch Association of Real Estate Agents (NVM ). The method-

ology used to calculate land values and lot sizes is described in Appendix B.2. The NVM data

contain information on the large majority (about 75%) of owner-occupied house transactions

between 2000 and 2015. We know the transaction price, the lot size, inside �oor space size (both

in m2), the exact address, and a wide range of housing attributes such as house type, number

of rooms, construction year, garden, state of maintenance, and whether a house is equipped

with central heating.10 We also know whether the house is a listed building.

We are interested in the impact of amenities on income sorting and land prices. We proxy

the amenity level by the picture density in a neighborhood. More speci�cally, we gather data

from Eric Fisher�s Geotagger�s World Atlas, which contain all geocoded pictures on the website

Flickr. The idea is that locations with an abundant supply of aesthetic amenities will have

a high picture density. We show in Appendix B.3 that there is a strong positive correlation

9We furthermore obtain information on the educational level of adults in the household. This is available

for only 75% of the population, but our main speci�cations will not use these data, so this does not appear to

be an issue.
10We exclude transactions with prices that are above e1 million or below e25; 000 and have a price per square

meter which is above e5; 000 or below e500. We furthermore leave out transactions that refer to properties

that are larger than 250m2of inside �oor space, are smaller than 25m2, or have lot sizes above 5000m2. These

selections consist of less than one percent of the data and do not in�uence our results.
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between picture density and historic amenities or geographical variables, such as access to open

water or open space. There are, however, several issues with using geocoded pictures as a proxy

for amenities.11

First, to avoid the possibility of inaccurate geocoding, we keep only one geocoded picture per

location de�ned by its geographical coordinates.12 This reduces the number of pictures by about

50%. Second, one may argue that the patterns of pictures taken by tourists and residents may

be very di¤erent. Since we have information on users�identi�ers, we can distinguish between

residents�and tourists�pictures by keeping users who take pictures for at least 6 consecutive

months between 2004 and 2015 in the Randstad. It seems unlikely that tourists stay for 6

consecutive months in the area. Note that the correlation between residents� and tourists�

pictures is 0:653, which is rather low.

Third, many recorded pictures may not be related to amenities but to ordinary events in

daily life occurring inside the house. Hence, we only keep pictures that are taken outside

buildings, using information on all the buildings in the Netherlands from the GKN dataset,

which comprises information on the universe of buildings. Furthermore, if pictures are not

related to amenities, one would expect almost a one-to-one relationship with population density.

However, if we calculate the population density in the same way as we calculate the amenity

level, the correlation is only 0:223. Last, we recognize that people who take pictures may belong

to a speci�c socio-demographic group (e.g., young people with a smartphone) by including

demographic controls and using instrumental variables.

Though imperfect, we believe that the picture density is probably the best proxy available

for the relative importance of urban amenities at a certain location because it captures both the

heterogeneity in aesthetic quality of buildings and residents�perceived quality of a certain loca-

tion. Nevertheless, we test the robustness of our results using a completely di¤erent, hedonic,

amenity index in the spirit of Lee and Lin (2018) (see Appendix B.3 for more details). The he-

donic index aggregates the average impact of several proxies of amenities, such as the locations

of historic buildings, proximity to open space and water bodies, by testing their joint impact

on house prices. We also construct historic instruments. Knol et al. (2004) have scanned and

digitized maps of the land use in 1900 into 50 by 50 meter grids and classi�ed each grid into 10

categories, including built-up areas, water, sand, and forest. We aggregate these 10 categories

into 3 categories: built-up areas, open space, and water bodies and calculate the share of the

area used for each type in each neighborhood. We further gather data from the 1909 census on

occupations and employment in each municipality. Those ones were much smaller than current

11Ahlfeldt (2013) shows that in Berlin and London the picture density is strongly correlated to the number

of restaurants, music nodes, historic amenities and architectural sites, as well as parks and water bodies.
12In a continuous space, the probability that several pictures are taken at exactly the same location is zero.

Hence, observing multiple pictures at the same location is likely caused by inaccurate geocoding.
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ones and about 4 times the size of the current neighborhoods.

For each occupation we obtain the required skill level. This enables us to calculate the

share of households who are medium and high-skilled. We gather additional data on the

railway network in 1900 and the stations which by then existed (see Appendix B.4 for more

information), enabling us to calculate employment accessibility in 1909.

5.2 Descriptive statistics

Figure 2a provides a map of the Netherlands, the studied area, where we indicate the most

important cities. The conurbation formed by the four largest cities, i.e., Amsterdam, Rotter-

dam, The Hague, and Utrecht is known as the Randstad, which has a population of about 7:1

million. Figure 2b displays the commuting pattern across neighborhoods and shows that the

Dutch urban structure is really polycentric as many commuting �ows occur between di¤erent

cities. This underlines the need for a model that allows for location choices in the whole coun-

try. Figure 2c is a map of the most important roads and railways that form the transportation

network in the Netherlands.

[Figure 2 about here]

We report descriptive statistics of the 10; 213; 524 households of our sample in Table 1. The

average (median) yearly income is e91; 535 (e86; 732). Incomes are approximately Fréchet

distributed (see Appendix B.5).13 The average land price in the sample is e1; 312 , but there

are stark spatial di¤erences. For example, in the capital Amsterdam, it is e3; 046, while in the

rural province of Friesland it is only e716. As expected, the correlation between the estimated

land price and lot size is negative (� = �0:245). The average lot size is 364m2. However, in

Amsterdam it is only 253m2, which corresponds to the higher land values in this city. About

15% of households occupy apartments and the correlation between occupying an apartment

and the land price is positive (� = 0:153).

[Table 1 about here]

The picture density, i.e., the proxy for amenity endowments, range from 0 to 231 pictures

per hectare. Only 0:2% of the households live in neighborhoods that do not have any pictures.

We will disregard those households. The average picture density in Amsterdam (22:7) is much

higher than in Rotterdam (9:63), The Hague (6:17), and Utrecht (7:66). Recall that we only

use pictures outside a building taken by residents in determining the amenity index. It appears

that 80% of the pictures are taken outside a building while about 60% of the pictures are

13We report maps and histograms of income and land prices in Appendix B.5.
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taken by local residents. Going back to Table 1, we see that the average commuting time is 26

minutes, which is very close to statistics provided by other sources (Department of Transport,

Communications and Public Works, 2010). The unconditional correlation of picture density

with income is close to zero (� = 0:0533), but this is not very informative as we do not control for

household characteristics. The correlation of picture density with land prices is substantially

higher (� = 0:431). Finally, households that have a short commute do not seem to live in

high amenity locations as the correlation between picture density and commuting time is low

(� = �0:0454).
The descriptive of the historic instruments that we use are described in Table B.6 of Ap-

pendix B.4.

6 Reduced-form analysis

In this section, we provide reduced-form evidence in support of the model�s qualitative predic-

tions that amenities and commuting time a¤ect the income distribution in and between cities;

and hence that exogenous amenities are an important determinant of sorting of households. The

analysis is complemented by a wide range of controls that provide evidence against alternative

possible explanations.

6.1 Econometric framework and identi�cation

We consider the income mapping, which plays a key role in our model, and provide reduced-form

evidence that the picture density is related to observed proxies for amenities and, in turn, we

show that sorting by incomes is indeed related to our proxy for amenities and commuting time

�the variables that constitute the location-quality index (see (22)). In line with (24), set

log ~!ik(x) = �1 log ~b(x) + �2 log ~� i(x) + �3Ck + �A(x) + �i + �ik(x); (25)

where ~!ik(x) is the observed income of household k living at x and working in i; ~b(x) is the

density of geocoded pictures �our proxy for amenities�, ~�(x) is the observed commuting time

to workplace i, Ck are household characteristics, �A(x) are travel-to-work-area A �xed e¤ects,
�i are workplace �xed e¤ects, and �ik(x) is an error term. The parameters �1, �2, �3 , �A(x)

and �i are estimated.

There are several issues when using (25) to identify the causal impact of ~b(x) and ~�(x) on

sorting on the basis of income. First, regarding commuting time ~�(x), unconditional correlations

between incomes and commuting times are generally positive rather than negative (see Susilo

and Maat, 2007 for the Netherlands). There are several reasons for that. Higher income

and educated people are more specialized and, therefore, operate in �thinner�labor markets.
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Given that there is a strong idiosyncratic component to residential location choices (people are

strongly attached to a location and usually dislike moving), this will imply that people with

higher incomes live further away from their workplace (see, e.g., Manning, 2003). Another

reason for a bias is that labor markets may not be fully competitive as households may bargain

over to get an income compensation for living further away. Hence, observed incomes ~!ik(x)

may be higher when people live further away. Note that about 15% of the costs of a longer

commute is paid by the employer (Mulalic et al., 2013).

Second, a more general concern about �1 and �2 as measures of the impacts of amenities

and commuting time on the spatial income distribution is that there is an omitted variable bias

due to sorting, heterogeneity in preferences for housing quality, agglomeration economies at the

workplace, and unobserved spatial features. More speci�cally, households may not only sort

on the basis of income, but also on the basis of other household characteristics. Households

with children, for example, may aim to locate in neighborhoods with a large amount of green

space. The variables ~b(x) and ~�(x) could also be correlated with unobserved housing attributes

because households with di¤erent incomes may have di¤erent preferences for housing quality,

such as the age of the housing stock (Brueckner and Rosenthal, 2009). For example, a large

share of the housing stock in the city center of Amsterdam takes the form of apartments. This

may imply that the a­ uent are not willing to locate there because they eschew apartment

living (Glaeser et al., 2008).

Third, there may be reverse causality between ~!ik(x) and ~b(x) and between ~!ik(x) and ~�(x).

For example, the provision of amenities may be a direct result of the presence of high-income

households. Indeed, anecdotal evidence suggests that cultural and leisure services are often

abundantly available in upscale neighborhoods (Glaeser et al., 2001). Similarly, high income

neighborhoods may attract employers that are in need of specialized and highly educated labor.

Last, since we do not observe the �exact�amenity level, there may be a measurement error in
~b(x), which may lead to a downward bias of �1 when the error is random.14

The �rst step to mitigate the biases associated with these concerns is �rst to �purge�house-

hold, job and housing characteristics, Ck, from neighborhood characteristics. For example,

Ck captures the members of the households who work full-time or part-time, the size of the

household and the age of the adults, while housing attributes are, for example, housing type

and construction year. This approach reduces the likelihood that we measure sorting on the

14As suggested by the literature on local public goods, there might be reverse causality, meaning that the

location of local public goods and jobs is determined by the spatial income distribution. To a large extent,

this is because the institutional context that prevails in the U.S. implies that the quality of schools and other

neighborhood characteristics are often determined by the average income in the neighborhood (Bayer et al.,

2007). This is to be contrasted with what we observe in many other countries where local public goods such as

schools are provided by centralized bodies.
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basis of household characteristics other than incomes. We also control for travel-to-work-area

�xed e¤ects to address the concern of aggregate sorting e¤ects between urban areas, as well as

di¤erences in spatial policies that are often spatially autocorrelated. Furthermore, by including

workplace �xed e¤ects �i we control for productivity di¤erences (e.g., due to agglomeration

economies) at the workplace.

The second step is to instrument for commuting times by constructing a measure of acces-

sibility to employment that is unrelated to characteristics of individual households (e.g., the

level of human capital). We de�ne employment accessibility as:

a(x) =

IX
i=1

F (� i(x))ni: (26)

In other words, at location x we weight the number of jobs ni at i by the share of people whose

commute is at most equal to � i(x).

Working with an endless string of controls will not fully address the endogeneity concerns

raised above. Unfortunately, our data do not allow us to exploit quasi-experimental or temporal

variation in ~b(x) and ~�(x). Therefore, to investigate the importance of the omitted variable bias

we analyze coe¢ cient movements after including controls. Oster (2019) shows that coe¢ cient

movements together with changes in theR2 can be used to estimate biased-corrected coe¢ cients.

We outline this procedure and discuss the results in detail in Appendix C.2.

The omitted variable bias is not the only endogeneity issue. Our proxies may also su¤er from

measurement error and reverse causality. We will, therefore, rely on instrumental variables. Our

�rst set of speci�cations uses contemporary instruments, while our second set of speci�cations

appeals to historic instruments. Regarding contemporary instruments for amenities, we use a

set of observed, arguably exogenous, proxies for amenities, such as the listed building density,

the share of the neighborhood x that is in a historic district, as well as the share of built-up

areas and water bodies. By using other proxies for amenities, the measurement error of ~b(x) is

likely to be mitigated. One may argue that the contemporary instruments do not convincingly

address the issue of unobserved locational and household characteristics that may be correlated

with ~b(x). Moreover, they do not address the potential endogeneity of accessibility ~�(x).

Alternatively, we exploit the fact that ~b(x) and ~�(x) are autocorrelated. First, land use in

1900 is used as an instrument. We expect aesthetic amenities to be positively correlated to the

share of built-up area in 1900. For example, the historic city center of Amsterdam has many

buildings that have been built before 1900; which are now listed buildings. Furthermore, we also

expect water bodies available in 1900 to be correlated to current water bodies, which are often

considered as an amenity. As an instrument for commuting time, we count the total number of

households Ex;1909 in 1909 within a commuting distance by using the railway network in 1900:
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a1909(x) =

nX
i=1

F (� i(x))ni;1909; (27)

where � i(x) is the commuting time between x and employment location i = 1; :::; n, while

F (� i(x)) is the share of people who commute at most � minutes in the sample (see Appendix

B.1). Hence, F (� i(x)) represents the aggregate cumulative distribution of commuting times,

while ni;1909 is the total employment at i in 1909. Because of temporal autocorrelation, we

expect that a better employment accessibility in 1909 also implies a better employment acces-

sibility today and, therefore, a lower commuting time.

Historic instruments can be criticized because of the (strong) identifying assumption that

past unobserved locational features are correlated to current unobserved locational endowments.

However, these instruments are more likely to be valid in the context of income sorting because

the patterns of income sorting within each city have considerably changed throughout the last

century. Around 1900, open water and densely built-up areas were not necessarily considered

as amenities. For example, the canals in Amsterdam were essentially open sewers (Geels, 2006).

Therefore, locations near a canal often repelled high-income households who located in lush

areas just outside the city. It was also before cars became the dominant mode of transport.

People around 1900 often walked to their working place, so that commuting distances were short.

However, the rich could a¤ord to live outside the city and take the train to their workplace.

The cities in 1900 were not yet in�uenced by (endogenous) planning regulations, as the �rst

comprehensive city plans date from the 1930s.

Still, one may be concerned that the measure of amenities is itself determined by the wealth

of individuals who locate there. The reason is that unobservables that determine the concen-

tration of wealthy individuals in the past also determine the locations of landmarks today, and

thus determine where pictures are taken. Moreover, one may argue that historic employment

accessibility, which is correlated to current commuting time, makes it easier to �nd jobs for all

household members, and thus increases household income due to better matching, rather than

shorter commutes. We address these concerns in several ways.

1. We estimate speci�cations where we control for the current share of built-up areas and

population density. Locations that were attractive in the past attracted people and consequently

have a high share of built-up area in 1900. The share of built-up areas in 1900 is likely to be

correlated to the current population density and to shares of built-up areas nowadays. By

controlling for the current share of built-up areas and population density we mitigate the issue

that our proxy for amenity just captures contemporary population density, rather than a higher

amenity level because of the historic buildings.

2.We gather data from the 1909 census on occupations and skills in each municipality. We

then control in various ways for the average skill level of households in 1909 as a proxy for the

26



income in the past. Controlling for the skill level should also address the issue that employment

density in 1909 may be correlated to better matching opportunities. Since this proxy may be

imperfect, we also use the share of Protestants in 1899 at the municipality level as another

proxy for income/skill. Indeed, at that time Protestants had a higher education level and were

wealthier.

3.We also consider another instrument for employment accessibility. From the 1899 census,

we gather data on the share of locally born people (i.e., within the same municipality). If the

(lack of) mobility of households is correlated over time, the share of locally born people should

be correlated positively to current commuting times because immobile households have to

commute on average longer to their jobs.

4. Finally, we estimate speci�cations where we exclusively focus on areas of reclaimed land

since 1900. These are areas that are reclaimed from the sea (about 5% of the land) just before

and after World War II. As these reclaimed locations are otherwise identical, and as no one

was living in those locations at that time, we address reverse causality, and strongly mitigate

any remaining omitted variable bias.

6.2 Reduced-form results

Baseline results. We �rst check that picture density is a good proxy for amenity endow-

ments. The results in Appendix B.3 show the expected signs: there is a higher picture density

areas where there are many historic buildings, in built-up areas, and in areas with more water

bodies (e.g., the Amsterdam canal district). The same holds if we control for sorting on other

household characteristics (e.g., sorting based on household composition) and commuting time.

Table 2 reports the baseline reduced-form results for the income mapping. Column (1)

shows a simple regression of log income on log amenities and log commuting times, while

we only control for demographic characteristics and year �xed e¤ects. This shows that more

amenities and a better accessibility are associated with higher incomes. Doubling amenities

implies an increase in neighborhood income of (log 2 � log 1) � 0:0387 = 2:7%. Doubling of

commuting time seems to attract households whose incomes are 4:6% higher �contrary to the

expectations. In column (2), we add a wide array of controls related to housing quality and

add travel-to-work-area �xed e¤ects to address spatial heterogeneity. Although the R2 increases

by about 30%, the coe¢ cients related to amenities and accessibility are hardly a¤ected. This

suggests that amenities and commuting time are not so much correlated to building quality

and aggregate characteristics of the urban area.

[Table 2 about here]

In column (3), we instrument for commuting time to address the issue that more skilled
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and specialized people often work in thinner labor markets and therefore commute longer. Our

instrument is then the accessibility to jobs given the aggregate commuting time distribution (see

(26)). The �rst-stage results reported in Appendix C.1 show that employment accessibility is

a strong instrument: a 10% increase in employment accessibility is associated with a reduction

in commuting time of 1:8-2:9%. Going back to Table 2, we observe in column (3) that this

addresses the upward bias of the commuting time e¤ect. The coe¢ cient implies that when

commuting time doubles, this attracts households whose incomes are 26% lower. It seems

that the e¤ect of amenities is now somewhat lower: a 100% increase in the amenity level

attracts households whose incomes are 0:6% higher. Column (4) includes job characteristics

and workplace �xed e¤ects to address any productivity e¤ects and agglomeration economies

arising at the workplace, which may make workers more productive. This indeed explains part

of the negative commuting e¤ect, as the coe¢ cient is now more than 60% lower.

Despite the inclusion of controls, travel-to-work-area and workplace �xed e¤ects, one may

argue that we do not convincingly address the omitted variable bias. We deal with this issue

by estimating bias-corrected regressions following Oster (2019) in Appendix C.2. We show

that when we choose the appropriate maximum attainable R2 (as only part of the variation in

incomes can be explained by variables varying at the neighborhood level), the estimates are very

close to the IV estimates we present below (so a positive amenity elasticity of around 0:025 and

a commuting time elasticity of �0:05-�0:45). This strongly suggests that the omitted variable
bias is not a major issue in the preferred estimates.

In column (5) we further aim to address potential measurement error in the picture density

and address reverse causality issues by instrumenting amenities and commuting time with

historic variables. The instruments are the shares of water bodies and of built-up area in 1900

within a neighborhood x, within 500m and between 500 and 1000m, as well as the number of

households within commuting distance in 1909 using the railway network in 1900.15 In Appendix

C.2, we report the corresponding �rst-stage results. The share of built-up area, the share of

water bodies in 1900 are strongly and positively correlated to the current amenity level, while

employment accessibility in 1909 is negatively related to current commuting time. Overall,

the Kleibergen-Paap F -statistic is above the rule-of-thumb value of 10 in all speci�cations,

suggesting that the instruments are su¢ ciently strong.

Going back to Table 2, the coe¢ cient of amenities is now somewhat higher: doubling

amenities attracts households whose incomes are 2:6% higher; doubling commuting time implies

an e¤ect of �15%. Column (6) is the most comprehensive speci�cation where we include job
15Since we have more instruments than endogenous variables, one might object that two-stage least squares

estimates are biased (Angrist and Pischke, 2009). Hence, we also have experimented with other estimators that

are (approximately) median unbiased, such as LIML or GMM estimators. The results are virtually identical.

For this reason, we do not report them in the paper.
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characteristics and workplace �xed e¤ects. We consider this as the preferred speci�cation.

Doubling amenities attracts households whose incomes are 1:6% higher. Doubling commuting

time leads to households whose incomes are 14% lower. Hence, the impact of commuting time

seems to be somewhat stronger than the impact of amenities.

To sum up, the results unequivocally indicate that the impact of amenities on income sorting

is positive and highly signi�cant. As for the commuting time, its e¤ect on income sorting is

negative and strong. To compare the e¤ects of commuting and amenities, it is informative to

look at a standard deviation of a log change in commuting time or amenities. In the preferred

speci�cation, a standard deviation increase in log amenities attracts households whose incomes

are about 1:656 � 0:023 = 3:7% higher. On the other hand, a standard deviation increase

in log commuting time attracts households whose incomes are 0:645 � 0:207 = 13:3% lower.

Hence, commuting time seems to be a more important driver of income sorting than amenities.

However, the impact of amenities is far from negligible. For example, if we compare an area

with the lowest amenity level (some rural area in the north) with the area with the highest

amenity level (the center of Amsterdam), the predicted income di¤erence is 28:6%, which is

clearly non-negligible.

Alternative proxies for amenities. One may worry that our results hinge on the par-

ticular choice of the amenity index. We therefore consider an alternative proxy for amenity

endowments. Following Lee and Lin (2018), we construct an aggregate hedonic amenity index

that describes the amenity provision at every location using house prices. The procedure is

described in Appendix B.3. We report the results in Table 3, which replicates the speci�cations

in Table 2 but replaces picture density by the log of the hedonic amenity index.

[Table 3 about here]

The e¤ect of commuting time is very much comparable to the results reported in Table 2.

Regarding the hedonic amenity index, once we control for housing and location characteristics,

we �nd an elasticity of about 0:8, implying that a 100% increase in the hedonic amenity index

leads to an increase in income of 55%. We �nd a somewhat lower amenity elasticity in column

(6) when we include control variables, workplace and travel-to-work-area �xed e¤ects, and

instrument for amenities and commuting time with historic variables. Doubling the amenity

level is then associated with an increase in incomes of 36%.

To make the results comparable, we rescale the hedonic amenity index in such a way that

the standard deviation of the log of the hedonic amenity index is the same as that of the log of

the picture index. The estimated elasticity of the rescaled hedonic amenity index then varies

between 1:6% and 2:4%, which is very much comparable to the impact of picture density.
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E¤ects on land prices. We also investigate the reduced-form impacts of amenities and

commuting times on land prices, so we estimate a reduced-form version of (18). In our setup

the signs of the e¤ects of amenities and accessibility on land prices and incomes are the same

(although magnitudes may di¤er). Therefore, we now estimate the e¤ects of amenities and

commuting time on land prices. The results are reported in Table 4.

[Table 4 about here]

We start in column (1), Table 4, with a simple OLS speci�cation including amenities and

commuting time, while controlling for demographic characteristics. This leads to a strong

positive e¤ect of amenities on land prices: doubling amenities implies a land price increase of

13%, while doubling accessibility leads to land prices that are 2:5% higher. When we instrument

for commuting time with accessibility to employment, control for workplace and travel-to-work

�xed e¤ects, the coe¢ cient of commuting time becomes considerably stronger, while the impact

of amenities is somewhat less strong. Column (4) shows that doubling commuting decreases

land prices by 50%, while a 100% increase in the amenity level is associated with an increase in

land prices of 4:0%. Like in the baseline results, the impact of amenities become considerably

stronger once we use historic instruments in columns (5) and (6). The preferred speci�cation in

column (6) indicates that doubling amenities leads to an increase in land prices of 13% , which

is sizable. The impact of commuting is somewhat imprecisely estimated, but the coe¢ cient is

negative. The point estimate indicates that a 100% increase in commuting time is associated

with a decrease in land prices of 27%. Hence, the reduced-form e¤ects on land prices do indeed

have the same signs as the e¤ects on income, but are stronger in magnitude. For example, if

we compare the land price di¤erential between the location with the lowest and the highest

amenity level, it is 238%, which is considerable.

Other sensitivity checks. Appendix C shows that our results still hold for a wide range

of alternative robustness checks and sample selections. To the extent one is still worried that

endogeneity plagues our estimates, we strongly advise the reader to consult Appendices C.2

and C.3. More speci�cally, in Appendix C.2 we report Oster�s bias-adjusted estimates, leading

to similar results. In Appendix C.3 we show that our results hold if we (i) only focus on the

urban area of the Randstad, (ii) include municipality �xed e¤ects, (iii) control for current land

use and population density, (iv) control for sorting based on skills in 1909, (v) use alternative

(historic) instruments, and (vi) only use observations on land that was reclaimed from the sea.

Further robustness analyses minimize any measurement error regarding accessibility and

workplace productivity, by running speci�cations where we only keep households (i) with a

single job, (ii) with a single job in a single-plant �rm, and (iii) with a company car who are
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more likely to use the car for commuting. We further test whether our results change when

using the share of highly educated adults in the household, which is a measure that is very

much correlated to income, but arguably is measured with little error. We �nd very similar

e¤ects, both in terms of sign and magnitude, which con�rms that looking at income or skill

levels is more or less equivalent. We also use commuting time by rail instead of commuting

time over the road and focus on areas close to city centers of large cities. Overall, the impact

of amenities and commuting time on income sorting choice is robust.

7 Concluding remarks

In this paper, we used a new setup in which any location is di¤erentiated by two attributes, i.e.,

amenity endowments and commuting costs. The bid rent function of urban economics may be

used to show that the uneven distribution of amenity endowments is su¢ cient to break down

the perfect sorting of households across the space-economy. More speci�cally, our analysis sug-

gests that promoting equal access to amenities is likely to favor residential segregation, whereas

a multi-modal provision of amenities across the city fosters income mixing. Under Stone-Geary

preferences, there exists a location-quality index that blends amenities and commuting costs

into a single aggregate whose behavior drives households�s residential choices. Studying this

index allows us to gain insights about how governments and urban planners can design policies

whose aim is to redraw the social map of cities. For example, the higher the index of a partic-

ular location, the higher the income of households who choose to locate there. The relevance of

local amenity endowments and commuting costs to explain the residential choices of heteroge-

neous consumers is con�rmed by the empirical analysis of where both e¤ects are found to be

signi�cant.

Our analysis also suggests that the provision of local public goods (LPGs) may a¤ect the

urban structure in a way that appears socially desirable by choosing adequately the location of

LPGs. That said, we now aim to develop a simple setting in the hope of shedding light on the

role of endogenous amenities. Households at x choose their consumption level c(x) of LPGs,

which, like in U.S. cities, are �nanced by a property tax 
(x). Hence, under the assumption of a

�xed lot size (� = 0 and h = 1), we have c(x) = 
(x)R(x). Assuming that amenities and LPGs

are bundled into a Cobb-Douglas aggregate, preferences become U = b�c1��q, with 0 < � < 1.

Solving the utility-maximizing condition for the equilibrium tax rate for a !-household at x

yields c�(x) = (1 � �) [!t(x)� (1 + 
)R(x)]. Using c�(x) and applying the same approach as
in Section 3, it is readily veri�ed that

	!x(x; !; U
�(!)) = t(x)

�
�

2� �
B(x)� T (x)

�
:
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In this case, the location-quality index becomes �(x) = [b(x)]�=(2��) t(x). Comparing this

condition to (14) where � = 0 shows that, the decentralized provision of LPGs weakens the

impact of amenity endowments in individual residential choices. In particular, when households

do not value much historic or natural amenities (� is small) or when the level of such amenities

is almost constant across space, residential choices will be mainly driven by commuting costs.
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Tables
Table 1 – Descriptive statistics

(1) (2) (3) (4)
mean sd min max

Gross income (in e) 91,535 53,683 3,589 999,897
Land price (eper m2) 1,312 752.2 0.00753 22,418
Lot size (m2) 364.3 923.8 25 24,824
Pictures per ha 2.189 8.840 0 231.9
Commuting time in minutes 26.39 17.18 0 120.0
Hedonic amenity index 2.821 0.0915 2.723 3.885
Share historic district 0.0347 0.139 0 1
Listed building 0.0941 0.699 0 17.06
Share built-up land 0.449 0.298 0.000856 1
Share water 0.0496 0.0738 0 0.813
Employment accessibility 624,940 275,990 14,427 1,347,124
Total hours worked in household 2,159 913.1 416.1 6,239
Household has company car 0.149 0.356 0 1
Works at single-establishment firm 0.443 0.497 0 1
Number of jobs in household 1.511 0.968 1 18
Person is male 0.521 0.215 0 1
Person is foreigner 0.0718 0.217 0 1
Age of person 41.99 9.008 18 64
Apartment 0.153 0.360 0 1
House built <1945 0.192 0.394 0 1

Notes: The number of observations is 10,213,540. For land price and lot size the number of
observations is 2,196,280. Because of confidentiality restrictions the minimum and maximum
values refer to the 0.01% and 99.99% percentile. This implies that we exclude the bottom
and top 1,024 observations.
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Table 2 – Baseline regression results
(Dependent variable: the log of pictures per ha)

+ Controls, Contemporary instrument Historic instruments for

fixed effects for commuting time amenities and commuting time

(1) (2) (3) (4) (5) (6)
OLS OLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0387*** 0.0294*** 0.0086*** 0.0082*** 0.0368*** 0.0226***
(0.0017) (0.0013) (0.0030) (0.0016) (0.0075) (0.0065)

Commuting time (log) 0.0670*** 0.0694*** -0.3767*** -0.1536*** -0.2179** -0.2065***
(0.0013) (0.0011) (0.0553) (0.0220) (0.0895) (0.0657)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls No Yes Yes Yes Yes Yes
Job controls No No No Yes No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects No Yes Yes Yes Yes Yes
Workplace fixed effects No No No Yes No Yes

Number of observations 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540
R2 0.1996 0.2594
Kleibergen-Paap F -statistic 134.3 364.9 14.29 17.81

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household
type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether
the household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls include
house type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered
at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10

Table 3 – A hedonic amenity index
(Dependent variable: the log of household gross income)

+ Controls, Contemporary instrument Historic instruments for

fixed effects for commuting time amenities and commuting time

(1) (2) (3) (4) (5) (6)
OLS OLS 2SLS 2SLS 2SLS 2SLS

Hedonic amenity index (log) 1.2668*** 0.8009*** 0.8422*** 0.7148*** 0.8061*** 0.5216***
(0.1217) (0.0978) (0.0931) (0.0673) (0.2020) (0.1482)

Commuting time (log) 0.0539*** 0.0635*** -0.4453*** -0.1965*** -0.4691*** -0.3317***
(0.0015) (0.0011) (0.0470) (0.0191) (0.0543) (0.0386)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls No Yes Yes Yes Yes Yes
Job controls No No No Yes No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects No Yes Yes Yes Yes Yes
Workplace fixed effects No No No Yes No Yes

Number of observations 10,233,133 10,233,133 10,233,133 10,233,133 10,233,133 10,233,133
R2 0.1904 0.2553
Kleibergen-Paap F -statistic 202.5 497.5 29.75 32.15

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household
type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether
the household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls include
house type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered
at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table 4 – Effects on land prices
(Dependent variable: the log of land price)

+ Controls, Contemporary instrument Historic instruments for

fixed effects for commuting time amenities and commuting time

(1) (2) (3) (4) (5) (6)
OLS OLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.1874*** 0.0960*** 0.0481*** 0.0575*** 0.2052*** 0.1910***
(0.0054) (0.0032) (0.0059) (0.0042) (0.0212) (0.0208)

Commuting time (log) -0.0357*** -0.0223*** -1.0866*** -0.7154*** -0.3114 -0.3854*
(0.0033) (0.0016) (0.1095) (0.0622) (0.2518) (0.2063)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls No Yes Yes Yes Yes Yes
Job controls No No No Yes No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects No Yes Yes Yes Yes Yes
Workplace fixed effects No No No Yes No Yes

Number of observations 2,196,324 2,196,324 2,196,324 2,196,324 2,196,324 2,196,324
R-squared 0.2257 0.6007
Kleibergen-Paap F -statistic 154 307.1 11.56 12.43

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household
type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether
the household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls include
house type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered
at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Figures

Figure 1 – Sorting and location quality
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(a) Overview map

(b) Commuting networks (c) Transport Network

Figure 2 – The Netherlands
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Appendix of "Income Sorting Across Space:

The Role of Amenities and Commuting Costs"

Abstract

In this Appendix we provide proofs of Proposition 1 and 2, the derivation of the land

rent under Stone-Geary preferences. We also provide more detailed information on the data

and discuss a wide range of robustness checks for the reduced-form income mapping.

Keywords: cities, social strati�cation, income, amenities, commuting

JEL classi�cation: R14, R23, R53, Z13.
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Appendix A. Theory

A.1 Proof of Proposition 1

Di¤erentiating (8) with respect to x and using (7), we obtain:

	x(x; !; U
�(!)) =

!t

H

�
tx
t
� Qb
!t
bx

�
(A.1)

Di¤erentiating (A.1) with respect to ! and rearranging terms yields the following expression:

	x!(x; !; U
�(!)) =

t

H

�
tx
t

h
1� !

H
(H! +HUU

�
!)
i

+
bx
t

�
H! +HUU

�
!

H
Qb � (QbH(H! +HUU

�
!) +QbUU

�
!)

��
: (A.2)

Since Q is the solution to the equation u(q; h) = U=b(x), the following expressions must

hold:

Qb = � U

b2uq

QbU = � 1

b2uq
+

U

b2u2q
uqqQU

QbH =
U

b2u2q
(uqqQH + uqh) :

Assume that the !-households are located at x. Di¤erentiating u = U�(!)=b with respect

to ! and using the budget constraint Q = !t(x)�H	 and (9), we obtain:

[t� (H! +HUU
�
!)	]uq + (H! +HUU

�
!)uh =

U�!
b
:

Since

�uq	+ uh = 0

at the residential equilibrium, we have:

t =
U�!
buq

: (A.3)

Plugging this expression, Qb; QbU and QbH in (A.2), we get
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which is equivalent to

	x!(x; !; U
�(!)) =

t

H

n
�T (x)

h
1� !

H
(H! +HUU

�
!)
i

+B(x)

�
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:

Using
duq
d!

= uqqQH (H! +HUU
�
!) + uqqQUU

�
! + uqh (H! +HUU

�
!) ;

we can rewrite 	x! as follows:

	x!(x; !; U
�(!)) =

t

H

��
1�

"H;! + "uq ;!

"U;!

�
B � (1� "H;!)T

�
; (A.4)

which proves Proposition 1.

A.2 Homothetic preferences

Assume that the utility u(q; h) is homothetic, that is, homogeneous linear. Then, it must be

that "h;! = "q;! = 1. The �rst-order condition for utility maximization implies

uh = Ruq:

It follows from Euler�s theorem that

huh + quq = u

, h
uh
u
+ q

uq
u
= 1;

that is,

"U;h + "U;q = 1:

Since the income elasticity of utility is given by

"U;! = "U;h � "h;! + "U;q � "q;!;

we get

"U;! = 1:

It remains to determine @uq=@!. Using the �rst-order condition uh = Ruq, the budget

constraint Rh+ q = !t and Euler�s theorem, we obtain:

uq =
u

!t
:
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Taking the total derivative of this expression with respect to ! yields:

duq
d!

=
1

t

(du=d!)! � u

!2

=
u

!2t
("U;! � 1)

=
uq
!
("U;! � 1)

so that

"uq;! = 0:

In short, we have "U;! = 1, "H;! = "h;! = 1 and "uq;! = 0.

A.3 Stone-Geary preferences

It is readily veri�ed from (12) that

Q(h; U=b(x)) =

�
1

(h� h)�
U

b

� 1
1��

:

It follows from this expression that

QU =
1

1� �
U

1
1���1

�
1
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� 1
1��

=
1

(1� �)

Q

U
;

QUb = � QU
(1� �)b

;

Qb = �U
b
QU ;

Qh = � �

1� �

�
1

(h� h)

U

b

� 1
1��

QbH =
U

b

�

1� �
(h� h)�1QU :

Plugging Qb; QbH and QbU into (A.2) and rearranging terms leads to

	x!(x; !; U
�(!)) =

t

H

�
tx
t

h
1� !

H
(H! +HUU

�
!)
i

+
bx
b

�
H! +HUU

�
!

H

�
�U
t
QU

��
h� (1� �)h

(1� �)(h� h)

�
+

QU
(1� �)t

U�!

��
: (A.5)

Plugging Qh and Q in (7) and solving the corresponding equation yields

h� (1� �)h

(1� �)(h� h)
= !t

�
b

U
(h� h)�

� 1
1��

: (A.6)
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Given the expression of QU ; it turns out that�
�U
t
QU

��
h� (1� �)h

(1� �)(h� h)

�
= � !

1� �
: (A.7)

Di¤erentiating (8) with respect to ! and using (7), we obtain:

	!(x; !; U
�(!)) =

t

H

�
1� QU

t
U�!

�
(A.8)

which is equal to 0 if

U�! =
t

QU
: (A.9)

Using (A.7) and (A.9), (A.5) can be rewritten as follows

	x!(x; !; U
�(!)) =

t

H
�
h
1� !

H
(H! +HUU

�
!)
i
� 1

1� �
�
�
(1� �)

tx
t
+
bx
b

�
: (A.10)

Applying the implicit function theorem to (A.6) yields

HU =
(h� (1� �)h)(h� h)

U�h

and

H! = �
t(1� �)2

�h
U�

1
1�� b

1
1�� (h� h)1+

1
1�� :

Given QU ; (A.9) can be expressed as the following di¤erential equation:

U�! = t � (1� �)
�
b � (h� h)�

� 1
1�� (U�(!))�

�
1�� : (A.11)

We thus obtain

H! +HUU
�
! = t � (1� �)(h� h)

�
b

U
(h� h)�

� 1
1��

Therefore, by implication of (A.6), we have:

1� !

H
(H! +HUU

�
!) =

(1� �)h

h
:

Substituting this expression into (A.10) yields:

	x!(x; !; U
�(!)) =

t

H
� h
H
� [B � (1� �)T ] :

A.4 Proof of Proposition 2

The proof involves four steps.
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(i) Existence and uniqueness of the residential equilibrium and the bid-max lot

size. From the de�nition of the location-quality index given by (15), (A.6) can be rewritten

as follows:
H � (1� �)h

(1� �)(H � h)
= !�

1
1��

�
(H � h)�

U

� 1
1��

; (A.12)

which implies H(!t(x); U=b(x)) � H(�(x); !; U) so that the bid-max lot size depends on b(x)

and t(x) only through the location-quality index �(x).

The LHS of (A.12) is decreasing and tends to +1 when H ! h and to 1=(1��) > 0 when
H ! +1: The RHS of (A.12) is increasing in H. It tends to 0 when H ! h and to +1 when

H ! +1: Therefore, (A.12), equivalently (7), has a single solution H(!t(x); U=b(x)), which

implies that the housing demand is uniquely determined.

Applying the implicit function theorem to (A.12) yields

@H

@�
= �

�
U

1
1�� (H � h)�

1
1���1

�H

(1� �)

��1
!�

�
1�� < 0: (A.13)

Given (7), expression (8) reduces to

	(x; !; U) = �QH(H;U=b(x)):

Using QH leads to

	(x; !; U) =
�

1� �
(H � h)

�1
1��

�
U

b

� 1
1��

: (A.14)

(ii) Equilibrium utility level. Using the de�nition of the location-quality index, (A.11)

implies that the equilibrium utility level is a solution to the di¤erential equation in U�:

U�! = �
1

1�� (1� �)(H � h)
�

1�� (U�(!))�
�

1�� ; (A.15)

so that U�(!) depends on � only.

(iii) Supermodularity of the equilibrium utility level. Di¤erentiating (A.15) w.r.t. �,

we obtain:

@
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dU�

d!
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�
1�� (H � h)

�
1�� (U�(!))�

�
1�� �

�
1 + ��(H � h)�1

@H

@�

�
:

Using (A.13), this expression may be rewritten as follows:

@
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dU�
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1

1��H

#
:

From (A.12), the expression in the bracketed term is equivalent to

1� (H � h)
1

1��
(1� �)!�

1
1��

(U�(!))
1

1��H
= (1� �)

h

h
> 0:
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Therefore,
@

@�

dU�

d!
> 0:

The Spence-Mirrlees condition thus holds, which implies the existence of a positive assor-

tative matching between incomes and the values of the location-quality index. In other words,

there is a unique one-to-one and increasing relationship between ! and � (Chiappori, 2017).

Since a single value of � is associated with x, a unique value of ! must be associated with x.

Therefore, the equilibrium conditions (9) has a unique solution, which means that !�(x) is a

mapping.

Note that the supermodularity of U�(!) is equivalent to the inequality 	!� > 0. Indeed,

di¤erentiating (A.8) w.r.t. � and using (A.9) yield:

	!�(x; !t(x); U
�(!))j	!=0 =

t

H

�
@(t=QU)=@�

U�!

�
=

t

H

@U�!=@�

U�!
> 0:

(iv) Uniqueness of the equilibrium shares. The proof follows Montesano (1972). Assume

that there are m � 2 points x1 6= x2::: 6= xm exist such that �(x1) = �(xj) for j = 2; :::;m.

Using Step (i), we may rewrite (4) as follows:

js(x; !(x))f(!�(x))H f�(x); !�(x); U�(!�(x))g d!j = dx j = 1; :::;m: (A.16)

If !�(x1) = !�(xj), then f(!�(x1)) = f(!�(xj)) for j = 2; :::;m. Therefore,

H [�(x1); !
�(x1); U

�(!�(x1))] = H [�(xj); !
�(xj); U

�(!�(xj))] :

Dividing the relationships (A.16) between themselves leads to

s(x1; !
�(x1))

s(xk; !�(xk))
= 1 k = 2; :::;m:

Since
Pm

j=1 s(xj; !) = 1, the above system of equations has a unique solution given by

s�(xj; !
�(xj)) =

1

m
j = 1; :::;m:

As b(x) and t(x) are never constant on a non-negligible subset of N , there is an integer M

such that m �M holds.

A.5 The land rent and land gradient

1. The expression (8) can be rewritten as follows:

	(x; !; U�(!)) =
!t

H

�
1� Q

!t

�
:
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Using (A.9) and plugging QU in the above expression leads to

R�(x) =
!�(x)t

H

�
1� (1� �)

U(!�(x))

!�(x)U!(!�(x))

�
:

2. By plugging Qb into (A.1), we obtain:

	x(x; !; U
�(!)) =

!t

H

�
UQU
!t

B(x)� T (x)

�
and substituting t by its expression given in (A.9) we obtain:

	x [x; !
�(x); U(!�(x))] =

!�(x)t

H

�
1

"U;!
B(x)� T (x)

�
:

A.6 The equilibrium land rent under Fréchet distributions

Rearranging terms in (13) yields:

H � h = �

�
!t

	(x; !; U)
� h

�
:

Plugging the above expression into (A.14) leads to

	(x; !; U) = ��
�

1�� (1� �)�1
�

!t

	(x; !; U)
� h

� �1
1��
�
U(!)

b

� 1
1��

:

Dividing this expression by t(x) and setting � � 	=t, we get

� = ��
�

1�� (1� �)�1
�!
�
� h

�� 1
1��
[U(!)]

1
1�� �

�1
1�� :

Rearranging terms, this expression becomes:

� = �(1� �)
1��
�
�
! � �h

� 1
� [U(!)]�

1
� �

1
� : (A.17)

Applying the �rst-order condition to � yields the following di¤erential equation in !:

U�!(!) =
1

! � �h
U�(!):

Let

U�(!) =
�
! � �h

�
X(!) (A.18)

be a solution to the above di¤erential equation whereX(!) is determined below. Di¤erentiating

(A.18) with respect to !, we obtain

U!(!) =

�
1

! � �h
� h

! � �h
�! +

X!(!)

X(!)

�
U(!):
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Totally di¤erentiating � leads to

�! �
d�
d!

=
@�

@!
+ ���! = ���!: (A.19)

Di¤erentiating (A.17) with respect to � yields:

�� = �

�
1

�
��1 � 1

�
��h

�
! � �h

��1�
;

whose solution in �� is

�� =
1

�

�

�

�
�(! � �h)

�(! � �h) + h�

�
:

Therefore, we may rewrite (13) as follows:

H� = �(! � �h) + h�: (A.20)

Plugging (A.20) into �� leads to

�� =
! � �h
�H

:

Using �! and �!, (A.19) becomes:

�! = ���! =
1




! � �h
!H

=
1


�

(H � h)�

!H
> 0:

Since U!(!)=U(!) is equal to 1=(! � �h) in equilibrium, it must be that

X!(!)

X(!)
=

h

! � �h
�! =

h

! � �h
1


�

(H � h)�

!H
:

Therefore, using (A.20) leads to the following di¤erential equation in !:

X!(!) =
1




h

!H
X(!);

whose solution is

X(!) = k
� !
H

� 1
(1��)


; (A.21)

where k > 0 is the constant of integration. Indeed, di¤erentiating the above equation with

respect to ! leads to

X!(!) =
1

(1� �)


H � !(H! +H�
UU!)

H2

H

!
X(!):

Using 1� (!=H) (H! +HUU
�
!) = (1� �)h=h, we obtain:

X!(!) =
1

(1� �)


(1� �)h

H

1

!
X(!) =

1




h

!H
X(!):
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Substituting (A.21) into (A.18) yields:

U(!) =
�
! � �h

�
k
� !
H

� 1
(1��)


:

Plugging this expression into (A.17) and rearranging terms, we obtain the following implicit

solution for the equilibrium land rent:

R�(x) = �(1� �)
1��
� k�

1
� t(x)�

1
�

�
�t(x)

R�(x)
+
(1� �)h

!�(x)

� 1
(1��)�


: (A.22)

Since the RHS of (A.22) is strictly decreasing and tends to 0 (1) when R(x) ! 1 (0),

(A.22) has a unique solution in R�(x).

The lowest income in the sample, denoted by !, is strictly positive. It follows from (20)

that the lowest location-quality index associated with the poorest household is given by

� = s�

�
!

s!

�1=

> 0:

The constant k may be obtained by evaluating R�(x) at the least enjoyable location x where

�(x) reached its minimum �. We assume that x is unique. Furthermore, the land rent at x is

equal to the opportunity cost of land, RA. Therefore, it is readily veri�ed that k is given by

k�
1
� = RA�

�1(1� �)�
1��
� [t(x)]�1�� 1

�

�
�t(x)

RA
+
(1� �)h

!

� �1
(1��)�


:

Plugging this expression into (A.22) yields the equilibrium land rent at x:

R�(x) = RA
t(x)

t(x)

�
�(x)

�

� 1
�

"
� t(x)
R�(x) + (1� �) h

!�(x)

� t(x)
RA
+ (1� �) h

!

# 1
(1��)�


:

Note that this expression captures several e¤ects: the commuting costs at x and x, the

location-quality index at x and x, and the income mapping !�(x).
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Appendix B. Data

In this appendix, we detail the construction of the various datasets. In Appendix B.1 we

elaborate on how we calculate network distances and show the relationship with Euclidian

distance. Appendix B.2 continues by explaining how we measure land prices and lot sizes for

all locations. This is followed in B.3 by more information on our proxies for amenities: the

picture index and the construction of the hedonic amenity index. In Appendix B.4 we introduce

the historical data based on 1900 land use maps and the 1832 Census. Appendix B.5 reports

distributions of the variables of interest.

B.1 Commuting and travel times

To estimate the commuting time for each household, we use the tax register information,

which provides information on individual jobs and the number of hours worked in each �rm

for each year. From the ABR Regio dataset, we get information on all �rms which provide

information on each establishment in the Netherlands, such as its exact location, the industrial

sector, and the estimated number of employees in each establishment. Since we do not know

the exact establishment, only the �rm people work for, we assume that they work at the

nearest establishment of the �rm. This assumption may be problematic for �rms having a

large number of establishments (e.g., supermarkets or large banks). Therefore, we keep only

�rms with a maximum of 15 establishments throughout the Netherlands. As many such �rms

have establishments in di¤erent cities, it is reasonable to assume that people work in the

nearest establishment.16 Overall, we are left with 95% of �rms. To avoid miscoding and to

exclude employment agencies (where people do not actually work), we consider establishments

with no more than 10 thousand employees, which correspond to 0:1% of the total number of

establishments and 1% of total employment. Hence, excluding those establishments is unlikely

to a¤ect our results.

We �rst calculate the commuting time from each home location x to each job location i

for each year. Then, we determine the commuting time of each household by computing the

average commuting time of each adult household member weighted by the number of hours

(s)he worked. To calculate the travel time (as well as the time to travel to amenities) we obtain

information on the street network from SpinLab, which provides information on average free-

�ow speeds per short road segment (the median length of a segment is 96m), which are usually

lower than the speed limit.

16Alternatively, we could consider a distance-decay average of distances to the �rm�s establishments. Instead,

we test robustness by keeping households that have only one working-member who works during the whole year

in a single-establishment �rm. This leads to nearly identical results.
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The dataset from SpinLab provides information on free-�ow driving speeds for every major

street in the Netherlands. The actual speeds are usually well below the free-�ow driving speeds,

due to tra¢ c lights, roundabouts and intersections. For each neighborhood we calculate the

straight-line distance to the nearest access points on the network and then calculate the network

distance. The median distance from an observation in the dataset to the nearest access point

of the network is 195m (the average is 326m). We assume that the average speed to get to the

nearest access points is 10km/h. This is the speed based on the Euclidian distance. In reality,

the distance to get to the network will be higher because streets are usually curved. Hence,

the assumption of 10km/h seems reasonable as the minimum speed on roads in the network

is 20km/h. Furthermore, because of the dominance of the bicycle, this would be close to the

average cycling speed. Using these information, we calculate the total driving time, which is the

sum of the driving time to access the network, the network driving time and the time it takes

from the network to arrive at the destination. Alternatively, we calculate for each location pair

the Euclidian distance and assume again an average speed of 10km/h.

We also calculate the travel time using the train, using a similar approach. The median

distance of each centroid to the nearest station is 5:25km. We then choose the minimum of the

travel time over the road, using the train or taking the Euclidian travel time.

[Figure B.1 about here]

The correlation between travel time and Euclidian distance is modest (� = 0:643). For

short distances (< 10km) the correlation is, however, much higher (� = 0:862). We plot the

relationship between distance and travel time in Figure B.1a. This relationship is monotonic.

Figure B.1b shows the share of commuting people who travel at most � minutes, which we use

to calculate employment accessibility in 1900.

B.2 Land prices and lot sizes

Information on land values and lot sizes is not directly available but may be inferred from

data on home sales. We use information on home sales from NVM (The Dutch Association of

Realtors), which comprises the large majority (about 75%) of owner-occupied house transac-

tions between 2003 and 2017. We know the transaction price, the lot size, inside �oor space

size (both in m2), the exact address, and a wide range of housing attributes such as house

type, number of rooms, construction year, garden, state of maintenance, and whether a house

is equipped with central heating. We make some selections to make sure that our results are

not driven by outliers. First, we exclude transactions with prices that are above e1 million or

below e25; 000 and have a price per square meter which is above e5; 000 or below e500. We

also leave out transactions that refer to properties that are larger than 250m2 or smaller than
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25m2, or have lot sizes above 5000m2. These selections consist of less than 1% of the data and

do not in�uence our results. We follow a similar procedure as Rossi-Hansberg et al. (2010),

implying that we can only use information on residential properties with land. We are left with

1; 337; 445 housing transactions.

Let P(x) denote the house price in year y, H(~x) the observed lot size and C(~x) the housing
characteristics of property ~x. The log land rent R(x) is equal to the �xed e¤ects at the level of

the postcode (about 15-20 addresses), which we denote by &(x), while #(y) denote year y �xed

e¤ects. We estimate:

log
P(~x; y)
H(~x; y)

= �1C(~x; y) + &(x) + #(y) + �(~x; y); (C.2.1)

where �(~x; y) is an i.i.d. error term that is assumed to be uncorrelated to land rents and housing

characteristics, while �1 are parameters to be estimated. As logRx are given by the very local

�xed e¤ects, we do not impose any structure on how land rents Rx vary across locations.

For about 80% of the data we do not observe land prices directly, because either there were

no multiple sales in our study period or because there is no owner-occupied housing in the

respective postcode. We therefore also estimate the above equation with neighborhood �xed

e¤ects instead.

[Tables B.1 and B.2 about here]

Descriptive statistics for the housing sample are reported in Table B.1. Coe¢ cients �1
related to the housing attributes are reported in Table B.2. It appears that the house price

per square meter of land is generally a bit lower when the property is larger. However, the

house price per square meter of land of properties that are (semi-)detached is generally higher.

Furthermore, when the maintenance state of a property is good, prices are about 502=1269 =

40% higher. When a property has central heating, the price per square meter is about 5:1%

higher. The dummies related to the construction decades show the expected signs. Properties

constructed after World War II until 1970 generally have lower prices because this is a period

associated with a lower building quality. Lot sizes are inversely related to pattern of land prices

(� = �0:245). In other words, more expensive locations generally have smaller lots, which
makes sense.

B.3 Amenities

Picture density. Here we investigate whether there is a meaningful correlation between pic-

ture density and observed proxies for amenities. We gather data on the share of a neighborhood

in a historic district, the density of listed buildings, as well as the share of the neighborhood
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occupied by buildings or water. We use similar speci�cations as reported in Table 2, but take

the picture density as dependent variable. Table B.3 reports the results.

[Table B.3 about here]

In column (1) we regress picture density on our proxies for amenities. We �nd that a

standard deviation increase in listed building density is associated with an increase in picture

density of 8%. When the share of the area in a historic district increases by 10% percentage

points, this is associated with an increase in the picture density of 30%. Hence, the impact of

historic amenities on the revealed amenity level is large. The share of built-up land and water

bodies in the neighborhood are also positively related to the picture density: a 10% increase in

the share of built-up land or water bodies is associated with an increase in the picture index of

about 33%. In column (2) we include commuting time, demographic characteristics, housing

attributes and travel-to-work-area �xed e¤ects, leading to very similar estimates.

In column (3) we instrument for commuting time. We observe that commuting time does

not seem to be statistically signi�cantly correlated to the amenity level in a certain location.

However, once we include job characteristics and workplace �xed e¤ects, we �nd a weak rela-

tionship between commuting time and amenity level: a shorter commuting time is generally

associated with a higher picture density. We think this makes sense as the most central locations

generally provide a high amenity level and a somewhat better accessibility to jobs. However,

we reiterate that this relationship is not statistically strong.

A hedonic amenity index. We test whether our results are robust to using an alternative

hedonic amenity index, rather than relying on geocoded pictures. Following Lee and Lin (2018),

we construct an aggregate amenity index that describes the amenity level in every neighborhood

x.17 We will make a distinction between historic amenities and natural amenities.

Let A(~x) be a set of variables that describe amenities of property ~x (so the location is more
detailed than the neighborhood x). For example, we calculate the share of historic districts,

the number of listed buildings, water bodies and open space within 500m of each property.

Let P(~x; y) the house price, while C(~x; y) are housing characteristics of property ~x, and #(y)
are year y �xed e¤ects. We also include neighborhood �xed e¤ects &(x), and thus we identify

the e¤ects of amenities on prices within neighborhoods. Speci�cally, we estimate the following

equation:

17Albouy (2016) uses information on wages and housing costs to infer the level of amenities for U.S. cities.

However, his approach is not applicable here because we are interested in intra-city variation in amenities and

incomes.
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logP(~x; y) = �0A(~x) + �1C(~x; y) + #(y) + &(x) + �(~x; y); (B.3.1)

where �0 and �1 are parameters to be estimated and �(~x; y) is an i.i.d. error term. We then useb�0 and A(~x) to predict the amenity level in each location x in the Randstad:
~b(x) =

1

N(x)

NxX
~x=1

b�0A(~x); (B.3.2)

where ~b(x) is the (alternative) amenity value at x and N(x) are the number of observations in

neighborhood x. Hence, we take the mean amenity value of all locations ~x within neighborhoods

x.

We use data on the universe of housing transactions in the Netherlands between 2010 and

2015 from the NVM. Additional descriptive statistics of the NVM data are reported in Table

B.4. We have 695; 709 observations and the average house price is e229 thousand.

[Tables B.4 and B.5 about here]

In Table B.5 we report the results of the regression of equation (B.3.1). We �rst investigate

the impact of listed buildings. It can be seen that the share of historic districts leads to higher

price. A 10 percentage point increase in the share of land designated as historic district increases

prices by 1:8%. Listed buildings do have a small additional e¤ect of 0:5% per listed building.

In column (2) we investigate the impact of water bodies and open space. For a 10 percentage

point increase in water bodies, prices rise by 3%. Moreover, a 10 percentage point increase in

open space implies a price increases of 0:6%, so this e¤ect is considerably smaller. When we

put historic amenities and natural amenities together, the coe¢ cients are essentially una¤ected.

We consider this as our preferred speci�cation. In the last speci�cation, we investigate whether

the results change when we include endogenous amenities, such as shops, cafés, and leisure

establishments. This appears not to be the case. Only hotels restaurants and cafés have a

statistically signi�cant impact on prices, which suggests that exogenous amenities related to the

built environment and land use are more important than endogenous amenities.

B.4 Historic data

To instrument current amenity levels and commuting time we use information on land use, the

railway network and amenities in 1900. For the 1900 land use maps, Knol et al. (2004) have

scanned and digitized maps into 50 by 50meter grids and classi�ed these grids into 10 categories,

including built-up areas, water, sand, and forest. We aggregate these 10 categories into built-

up, open space and water bodies. Knol et al. document large changes in land use across the

Netherlands from 1900 to 2000. For example, the total land used for buildings has increased
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more than �vefold. On the other hand, the amount of open space has decreased by about

10%. We also use information on municipal population in 1900 from NLGIS. Municipalities

were much smaller at that time and about the size of a large neighborhood nowadays. We

impute the local population distribution using the location of buildings and assuming that the

population per building is the same within each municipality. We further use information on

railway stations from Koopmans et al. (2012). We enrich these data by adding missing stations

from various sources on the internet and create a network with travel times. To approximate

the speed, we �t a regression of the length of (current) railway segments between stations on

current travel time on the railway network. Based on historic sources, it appears that the

average speed is about 50% of what it is currently (about 70km/h).

We show a map of land use and the railway network for the Netherlands in 1900 in Figure

B.2. In Panel A it is shown that cities like Amsterdam, Rotterdam, The Hague, and Utrecht

were already large in 1900. It can also be seen that some areas that have been reclaimed from

the sea (e.g., to the northeast of Amsterdam) did not exist in 1900. The Panel B of Figure B.2

shows the railway network. In particular, places around Amsterdam and Utrecht have a high

accessibility. The �rst railway line in the Netherlands was opened in 1839 between Amsterdam

and Haarlem, soon followed by the openings of many other lines.

[Figure B.2 about here]

In Table B.6 we provide descriptives for all instruments. The average share of built-up area

in 1900 was 4:3%, while it was 4:2% in 1832. However, this �gure is a bit misleading because

for 1832 we have more data near urban areas. On average about 38 thousand jobs and 89

thousand people could be reached within commuting distance in 1900. Not surprisingly, this

was much lower (40 thousand) in 1832.

[Table B.6 about here]

B.5 Other descriptive statistics

In Figure B.3 we report the distributions of the log of income and the log of land price. The

distributions of land prices is somewhat positively skewed.

[Figure B.3 about here]

In Figure B.4 we show maps of income and land price distributions across the Netherlands.

As expected, land prices are generally higher in cities. The pattern for incomes is less clear,

but generally speaking we �nd that wealthier households locate close to or in cities.

[Figure B.4 about here]
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Appendix C. Other empirical results and sensitivity

This appendix reports various additional econometric results. First, we show �rst-stage results

in Appendix C.1. Then we report bias-corrected estimates using Oster�s (2019) methodology

in Appendix C.2. We undertake additional robustness checks in Appendices C.3 and C.4.

C.1 Pictures and amenities: the �rst-stage results

We report �rst-stage estimates in Table C.1 related to the baseline results reported in Table 2.

In columns (1) and (2) we focus on the impact on picture density. We �nd strong positive

impact of share of built-up land in 1900 and share water in 1900 on current picture density.

For example, when we include workplace and travel-to-work-area �xed e¤ects in column (2),

increasing the share of built-up land in 1900 by 10 percentage points in the neighborhood is

associated with an increase in the picture density of 42%. This makes sense: locations with

many historic buildings are often locations which were already developed around 1900. The

impact of water bodies is also positively correlated to the picture density, although the impact

is somewhat smaller in magnitude: a 10 percentage point increase in the share of water in 1900

leads to an increase in the picture density of 9:9%.

[Table C.1 about here]

In columns (3)-(6), Table C.1 we take employment accessibility as a dependent variable. The

instruments for accessibility are relevant. Contemporary employment accessibility is strongly

correlated to commuting times. In the preferred speci�cation with workplace �xed e¤ects

and job controls (column (4)), doubling employment accessibility reduces commuting times by

20:7%.

Columns (5) and (6) rely on historic instruments. We �nd a strong positive e¤ect of the

share of built-up land in 1900 between 500 and 1000m on accessibility. Likewise, employment

accessibility in 1909 has a strong positive e¤ect on current employment accessibility. More

speci�cally, in column (6), doubling employment accessibility in 1909 is associated with an

decrease in commuting times of 3:5%.

C.2 Bias-corrected estimates

Many non-experimental papers use coe¢ cient movements after the inclusion of control variables

to investigate whether omitted variable bias is important. Oster (2019) argues that coe¢ cient

movements alone are not a su¢ cient statistic to calculate bias. Instead, she argues that whether

omitted variable bias is a concern depends on the variance of the added control variables, as well
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as coe¢ cient movements. In other words, changes in the coe¢ cient(s) of interest after adding

controls should be scaled by the change in the R2. Oster (2019) then derives an estimator to

correct estimates for omitted variable bias under the assumption that the relationship between

the variables of interest and unobservables can be recovered from the relationship between the

variables of interest and observable control variables. In our context, this assumption makes

sense as control variables that are added bear some potential relationship to unobservables.

To be precise, we add many housing, demographic and job controls, as well as workplace and

travel-to-work-area �xed e¤ects, which are likely to be correlated to unobservables.

Oster (2019) then derives a GMM estimator to derive bias-corrected estimates of the impact

of amenities and employment accessibility on incomes. There are two key input parameters

that have to be determined. First, a parameter must be chosen that determines the relative

degree of selection on observed and unobserved variables, which we denote by �. Although this

parameter is fundamentally unknown, Altonji et al. (2005) and Oster (2019) show that � = 1

is a reasonable (upper-bound) value. Second, there is the maximum R2 from a hypothetical

regression of income on amenities, accessibility and controls, which we denote as R2max. Because

of measurement error and random variation in incomes, R2max is usually well below 1. Oster

(2019) considers to set R2max = �R̂
2 , where R̂2 is the R2 obtained from the regression of log

income on the variables of interest and all controls and �xed e¤ects. She provides some evidence

based on experimental studies that � � 1:3. To be on the safe side, we consider � = 1:5 and
� = 2. We report results in Table C.2

[Table C.2 about here]

In column (1) we consider � = 1:5. We �nd that the bias-corrected �1 = 0:026 , which

is virtually identical to the preferred estimate with historic instruments. The bias-adjusted

impact of commuting time is now negative (�1 = �0:058), in line with instrumented estimates
reported in Table 2. However, the magnitude is somewhat smaller: doubling commuting time

attracts households whose incomes are 4% lower. However, when the hypothetical R2max is

higher, so that it is twice the R2 obtained from the regression of log income on the variables of

interest and all controls and �xed e¤ects (� = 2), we see that the impact of commuting times

becomes considerably stronger. The coe¢ cient in column (2) indicates that a 100% increase

in commuting time attracts households whose incomes are 31% lower, which is very much

comparable to the baseline results. The impact of amenities with � = 2 is somewhat stronger:

doubling the picture density attracts households whose incomes are 5:9% higher.

In column (3) of Table C.2 we further investigate whether these bias-adjusted estimates

are robust to the inclusion of more detailed �xed e¤ects. More speci�cally, we further include

municipality �xed e¤ects and assume � = 1:5. The impact of amenities is very similar to

the result reported in column (1) (as well as the baseline result). The coe¢ cient regarding
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commuting time is about twice as strong, but somewhat in between the results reported in

columns (1) and (2). Overall, the results are robust.

In other words, although we do not know the �true�value for �, these results strongly suggest

that omitted variable bias is not a major issue, as the coe¢ cients lead to very similar outcomes

as the 2SLS estimates with historic instruments. We note that Oster�s (2019) methodology

does not account for measurement error in amenities or commuting time or reverse causality.

It may, therefore, still be important to apply our instrumental variables strategy using historic

instruments.

C.3 Sensitivity: identi�cation revisited

We consider additional robustness analyses in Table C.3 that should increase con�dence in

the validity of our identi�cation strategy. First, we show that our results are similar once we

focus solely on urban areas. In column (1) we only include observations in the Randstad, i.e.,

the main polycentric metropolitan area in the Netherlands. This reduces the total number of

observations by more than 50%. However, our results are very similar.

[Table C.3 about here]

In column (2), Table C.3, we estimate speci�cations where we again use instruments from

1900, but include municipality �xed e¤ects. This implies that we identify commuting and

amenity e¤ects within municipalities. Municipality �xed e¤ects absorb any e¤ects related to

municipal policies and tax di¤erentials. We �nd very similar coe¢ cients.

Column (3) controls for the current share of built-up areas and population density to make

sure that our amenity proxy is not just capturing population density or built-up land. We �nd

very similar e¤ects for amenities, but the e¤ect of commuting time is now stronger. This may

be because we have weak instruments, with a Kleibergen-Paap F -statistic that is barely 10.

Another concern is that clusters of high-income households are autocorrelated, so that our

instruments are correlated to the concentrations of high-income households in 1909. To inves-

tigate whether this is an issue, we calculate the share of medium and high-skilled households

in 1909. Municipalities then were much smaller, so this is a rather �ne-grained measure of

skill sorting across space. We also gather data on the share of Protestants in each munici-

pality in 1899 and control for population accessibility in 1900. Including those measures in

column (4) does not materially impact our coe¢ cients. Note that the share of high-skilled and

medium-skilled households in 1909 is negatively correlated to current incomes, which suggests

that the determinants of residential choices in the two periods are fairly di¤erent. In addition,

conditional on commuting time, population accessibility in 1900 does not in�uence the current

income distribution.
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In column (5), we further study the sensitivity of our results by choosing another instrument

for commuting time. We use the share of the population in 1909 born in the same municipality.

If mobility of households is correlated over time, the share of locally born people should be

negatively correlated to current accessibility, as the areas that host a high number of jobs (so

have a better accessibility) are expected to attract workers from other places. Indeed, we �nd

that the share of locally born people in 1909 is negatively associated with current employment

accessibility. The Kleibergen-Paap F -statistic again indicates that these are strong instruments.

We �nd a similar coe¢ cient related to commuting time.

To the extent one is still concerned that household income sorting is autocorrelated, in

column (6) we only include neighborhoods on reclaimed land. The Netherlands is well known

for its large-scale projects that reclaim land from the sea. We consider the three main projects

(Wieringermeer, Noordoostpolder, Oostelijk, and Zuidelijk Flevoland) that occurred between

1930 and 1968, but permission by the government to reclaim those areas was already given in

1930. Most of the land was intended for agriculture, but a few small settlements were planned

on the newly reclaimed land. Moreover, Lelystad was planned to be the largest city in the

area, but nowadays Almere is by far the largest one. Hence, the plans di¤er considerably from

the current spatial distribution of activities. Since only a small share of the population lives in

those areas, we only keep about 2:5% of the observations. The latter approach should address

any remaining concerns related to reverse causality as no one was living in those locations at

that time, and thus income was zero.

We then instrument for amenities and commuting time with the share of planned built-up

and green areas and planned accessibility in column (6). The instruments are, unfortunately,

very weak leading to imprecise coe¢ cients. Still, the point estimates are again similar to

the baseline estimates. Instrumenting either amenities or commuting time leads to similar

outcomes, but with lower standard errors.18

C.4 Sensitivity: other checks

Table C.4 reports the results of additional robustness checks. Our dataset contains observations

on households. When calculating the commuting elasticity and when including workplace �xed

e¤ects, we calculate average commuting times based on working hours of di¤erent jobs of adults

in the household. In column (1) we only include households that are associated with one job

(location). This does not lead to signi�cant di¤erences in the outcomes.

Recall that we calculate the commuting time to the nearest plant when the �rm has multiple

establishments. We test whether this introduces error by only including households that are

associated with one job in a single plant �rm in column (2). In this way we address any

18These results are available upon request.
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measurement error in commuting time. Again, the estimates are very similar, although the

number of observations is considerably lower.

[Table C.4 about here]

Our measure of commuting time relies on the minimum travel time by road and rail. How-

ever, in almost all cases travel time by car is shorter. To make sure that households actually

consider this travel time, we only keep households having a company car in column (3). This

does not change the results.

Column (4) replaces the dependent variable income by the share of adults in the household

that have a college degree or more. We �nd very similar e¤ects. For example, when the picture

density doubles, this increases the share of highly educated households by 1:1 percentage points.

Doubling commuting times decreases the share of highly educated households by 32:3 percentage

points.

Column (5) tests whether the results are robust when using commuting time by rail instead

of commuting time by road. The results are comparable.

Finally, in column (6), we only keep locations that are within 15km of a city center with

at least 100; 000 inhabitants to make sure that our results are not driven by rural locations.

We �nd that the coe¢ cients are very similar, except that standard errors of the coe¢ cients are

considerably higher. Hence, including locations throughout the Netherlands has the bene�t that

it leads to more precise estimates.
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Appendix tables
Table B.1 – Descriptives for NVM dataset

(1) (2) (3) (4)
mean sd min max

House price (in e per m2) 1,269 927.2 25 25,000
Lot size (in m2) 445.7 1,189 25 25,000
Size of property (in m2) 132.4 45.16 26 538
Number of rooms 4.944 1.363 0 25
Terraced property 0.417 0.493 0 1
Semi-detached property 0.370 0.483 0 1
Detached property 0.189 0.392 0 1
Private parking space 0.454 0.498 0 1
Garage 0.394 0.489 0 1
Garden 0.966 0.182 0 1
Number of bathrooms 0.929 0.483 0 8
Number of kitchens 0.677 0.484 0 5
Number of balconies 0.132 0.354 0 4
Number of roof terraces 0.0674 0.257 0 3
Number of floors 2.717 0.636 1 13
Internal office space 0.00444 0.0665 0 1
Maintenance score of the outside 0.758 0.131 0 1
Maintenance score of the inside 0.753 0.143 0 1
Number of types of insulation 2.381 1.831 0 5
Central heating 0.920 0.271 0 1
Listed building 0.00652 0.0805 0 1
Newly built property 0.0417 0.200 0 1
Construction year 1,967 34.95 1,362 2,017
Year of observation 2,011 4.389 2,004 2,017

Notes: The number of observations is 1,337,495. Because of confidentiality
restrictions the minimum and maximum values refer to the 0.01% and 99.99%
percentile. This implies that we exclude the bottom and top observations
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Table B.2 – Estimating land prices and lot sizes
(Dependent variable: the log of land price per m2)

(1)

Rooms -6.1664***
(0.4506)

Terraced property 702.4875***
(6.5087)

Semi-detached property 510.0447***
(6.5516)

Detached property 360.7740***
(6.7580)

Private parking space -56.3558***
(1.9988)

Garage -42.8166***
(2.0556)

Garden 47.5907***
(2.8356)

Number of bathrooms 17.3274***
(0.9885)

Number of kitchens -7.2575***
(1.0818)

Number of balconies 47.8147***
(1.5204)

Number of roof terraces 109.0801***
(1.8878)

Number of floors 94.9407***
(1.0148)

(Internal) office space -55.3454***
(6.3595)

Maintenance score of the outside 29.5137***
(6.3366)

Maintenance score of the inside 501.7345***
(5.8143)

Number of types of insulation 8.3945***
(0.3138)

Central heating 65.8404***
(1.7719)

Listed building 27.9334***
(6.2691)

Newly built property -13.3758***
(4.3108)

3th-order polynomial of property size Yes
Construction decade dummies Yes
Year fixed effects Yes
Postcode fixed effects Yes

Observations 1,280,031
R2 0.8295

Notes: Standard errors are in parentheses. *** p <
0.01, ** p < 0.05, * p < 0.10.
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Table B.3 – Picture density and amenities
(Dependent variable: the log of household gross income)

+ Controls, Contemporary instrument

fixed effects for commuting time

(1) (2) (3) (4)
OLS OLS 2SLS 2SLS

Listed building 0.1155*** 0.1252*** 0.1165*** 0.1171***
(0.0338) (0.0370) (0.0387) (0.0372)

Share historic district 3.0024*** 2.2823*** 2.1309*** 2.1445***
(0.2149) (0.1988) (0.2231) (0.2016)

Share built-up land 3.2642*** 2.5656*** 2.1545*** 2.2238***
(0.0871) (0.0860) (0.3144) (0.1742)

Share water bodies 3.3416*** 2.4511*** 2.4469*** 2.3972***
(0.3320) (0.3364) (0.3347) (0.3199)

Commuting time (log) -0.0270*** -1.1971 -0.7256*
(0.0070) (0.8590) (0.4016)

Household controls No Yes Yes Yes
Housing controls No Yes Yes Yes
Job controls No No No Yes
Year fixed effects Yes Yes Yes Yes
Travel-to-work-area fixed effects No Yes Yes Yes
Workplace fixed effects No No No Yes

Number of observations 10,213,540 10,213,540 10,213,540 10,213,540
R2 0.5134 0.5970
Kleibergen-Paap F -statistic 55.92 232.2

Notes: Bold indicates instrumented. Household controls include household size, mean age of
adults, mean gender, household type (couple, single, kids), the share of the household that is
foreign-born. Job controls are the total hours worked, whether the household has a company
car, the share of full-time contracts, the share of permanent contracts. Housing controls include
house type, height of the building, construction year dummies and whether a building is listed.
Standard errors are clustered at the neighborhood level and in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.10

Table B.4 – Other descriptive statistics for NVM data

(1) (2) (3) (4)
mean sd min max

House price (in e) 229,238 116,074 25,000 1,000,000
Share land in historic district <500m 0.0695 0.192 0 1
Listed buildings <500m 0.179 0.894 0 19.53
Share water bodies <500m 0.0411 0.0713 0 0.920
Share open space <500m 0.244 0.217 0 1
Shops, <500m 0.254 0.394 0 4.711
Hotels, restaurants, cafés <500m 0.159 0.364 0 7.983
Leisure establishments <500m 0.0127 0.0215 0 0.318

Notes: The number of observations is 695,709. Because of confidentiality restrictions the
minimum and maximum values refer to the 0.01% and 99.99% percentile. This implies that
we exclude the bottom and top 70 observations.
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Table B.5 – Determining the hedonic amenity index
(Dependent variable: the log of house price per m2)

(1) (2) (3) (4)
OLS OLS OLS OLS

Share land in historic district <500m 0.1796*** 0.1710*** 0.1695***
(0.0210) (0.0204) (0.0209)

Listed buildings <500m 0.0047** 0.0052** -0.0043
(0.0024) (0.0024) (0.0029)

Share water bodies <500m 0.3014*** 0.2824*** 0.2869***
(0.0255) (0.0253) (0.0251)

Share open space <500m 0.0604*** 0.0636*** 0.0690***
(0.0084) (0.0084) (0.0085)

Shops <500m -0.0084
(0.0074)

Hotels, restaurants, cafés <500m 0.0423***
(0.0118)

Cultural establishments <500m 0.0480
(0.0640)

Leisure establishments <500m 0.0232
(0.0730)

Housing controls Yes Yes Yes Yes
Neighborhood fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Number of observations 695,709 695,709 695,709 695,709
R2 0.8206 0.8207 0.8217 0.8219

Notes: Housing controls include house type, house size, whether the property has a garage,
garden and/or central heating, the number of layers of insulation, the maintenance quality, the
number of rooms, construction year dummies and whether a building is listed. Standard errors
are clustered at the neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10

Table B.6 – Descriptive statistics for historic data

(1) (2) (3) (4)
mean sd min max

Employment accessibility in 1909 38,029 23,884 1,494 163,349
Share of high-skilled workers in 1909 0.0298 0.0285 0 0.197
Share of medium-skilled workers in 1909 0.216 0.128 0.00386 0.688
Population accessibility in 1900 89,184 62,641 3,008 422,544
Share built-up land in 1900 0.0432 0.103 0 0.930
Share water in 1900 0.0591 0.175 0 1
Share locals in 1899 0.643 0.102 0.217 0.950
Share protestants in 1899 0.518 0.337 0 0.998

Notes: The number of observations is 10,213,540. Because of confidentiality restrictions
the minimum and maximum values refer to the 0.01% and 99.99% percentile. This implies
that we exclude the bottom and top 1,024 observations
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Table C.1 – Pictures and commuting time: first-stage regression results

Dependent variable: Dependent variable:

the log of pictures per ha the log of commuting time

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Employment accessibility (log) -0.1835*** -0.2945***
(0.0158) (0.0154)

Pictures per ha (log) -0.0411*** -0.0465***
(0.0022) (0.0019)

Share built-up land in 1900 4.2960*** 4.2413*** -0.3319*** -0.3119***
(0.3192) (0.3075) (0.0364) (0.0348)

Share built-up land in 1900, 0-500m 0.6415 0.7537 0.3573** 0.2261
(1.2821) (1.2279) (0.1483) (0.1482)

Share built-up land in 1900, 500-1000m 7.2817*** 6.5271*** -1.0300*** -1.1923***
(1.4426) (1.3754) (0.1837) (0.1869)

Share water in 1900 0.8896*** 0.9869*** 0.1885*** 0.1601***
(0.3413) (0.3222) (0.0452) (0.0402)

Employment accessibility in 1909 (log) 0.1472** 0.1624*** -0.0353*** -0.0499***
(0.0593) (0.0569) (0.0084) (0.0096)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls Yes Yes Yes Yes Yes Yes
Job controls No Yes No Yes No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects Yes Yes Yes Yes Yes Yes
Workplace fixed effects No Yes No Yes No Yes

Number of observations 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540
R2 0.4907 0.5291 0.0423 0.1612 0.0357 0.1496

Notes: Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids), the share
of the household that is foreign-born. Job controls are the total hours worked, whether the household has a company car, the share
of full-time contracts, the share of permanent contracts. Housing controls include house type, height of the building, construction
year dummies and whether a building is listed. Standard errors are clustered at the neighborhood level and in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.10

A26



Table C.2 – Bias corrected estimates
(Dependent variable: the log of household gross income)

Travel-to-work-area Municipality

fixed effects fixed effects

(1) (2) (3)
Bias-adj Bias-adj Bias-adj

Pictures per ha (log) 0.0255*** 0.0850* 0.0289**
(0.0026) (0.0497) (0.0111)

Commuting time (log) -0.0585*** -0.445*** -0.112***
(0.0040) (0.0306) (0.0068)

Household controls Yes Yes Yes
Housing controls Yes Yes Yes
Job controls Yes Yes Yes
Year fixed effects Yes Yes Yes
Travel-to-work-area fixed effects Yes Yes Yes
Municipality fixed effects No No Yes
Workplace fixed effects Yes Yes Yes

δ 1.0 1.0 1.0
Π 1.5 2.0 1.5

Number of observations 10,213,540 10,213,540 10,213,540

Notes: Household controls include household size, mean age of adults, mean
gender, household type (couple, single, kids), the share of the household that is
foreign-born. Job controls are the total hours worked, whether the household has
a company car, the share of full-time contracts, the share of permanent contracts.
Housing controls include house type, height of the building, construction year
dummies and whether a building is listed. Standard errors are clustered at the
neighborhood level and in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table C.3 – Identification revisited
(Dependent variable: the log of household gross income)

Only + Municipality Control for 1909 Other Reclaimed

Randstad fixed effects current land use skills instruments land

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0300*** 0.0240*** 0.0206** 0.0229*** 0.0305*** 0.0191
(0.0102) (0.0072) (0.0080) (0.0069) (0.0070) (0.0143)

Commuting time (log) -0.2427** -0.2230*** -0.5618*** -0.2962*** -0.1647** -0.0561
(0.1146) (0.0861) (0.1121) (0.0865) (0.0790) (0.1077)

Share built-up land -0.1632***
(0.0238)

Population per ha (log) -0.0234***
(0.0041)

Share of medium-skilled workers in 1909 -0.2068*** -0.1747***
(0.0287) (0.0265)

Share of high-skilled workers in 1909 -0.1187 -0.0822
(0.0990) (0.0956)

Share protestants in 1899 -0.0008 -0.0072
(0.0113) (0.0102)

Population accessibility in 1900 (log) -0.0053 0.0002
(0.0056) (0.0051)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls Yes Yes Yes Yes Yes Yes
Job controls Yes Yes Yes Yes No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects Yes Yes Yes Yes Yes Yes
Municipality fixed effects No Yes No No No No
Workplace fixed effects Yes No Yes Yes Yes Yes

Number of observations 4,340,639 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540
Kleibergen-Paap F -statistic 7.500 18.18 10.05 16.08 21.49 0.264

Notes: Bold indicates instrumented. Household controls include household size, mean age of adults, mean gender, household type (couple,
single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether the household has a
company car, the share of full-time contracts, the share of permanent contracts. Housing controls include house type, height of the
building, construction year dummies and whether a building is listed. Standard errors are clustered at the neighborhood level and in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table C.4 – Other robustness checks

One job + Single Company Education Commuting City center

households plant firm car level by rail <15km

(1) (2) (3) (4) (5) (6)
2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

Pictures per ha (log) 0.0239*** 0.0230*** 0.0207** 0.0165* 0.0294*** 0.0229*
(0.0065) (0.0068) (0.0085) (0.0090) (0.0061) (0.0119)

Commuting time (log) -0.2127*** -0.1869*** -0.2285** -0.4740*** -0.3173**
(0.0643) (0.0691) (0.1009) (0.0927) (0.1440)

Commuting time by rail (log) -0.1045**
(0.0454)

Household controls Yes Yes Yes Yes Yes Yes
Housing controls Yes Yes Yes Yes Yes Yes
Job controls Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Travel-to-work-area fixed effects Yes Yes Yes Yes Yes Yes
Workplace fixed effects Yes Yes Yes Yes Yes Yes

Number of observations 6,706,524 3,532,906 1,523,567 7,626,355 10,213,540 6,023,886
Kleibergen-Paap F -statistic 17.63 14.56 7.026 17.02 10.15 5.657

Notes: Bold indicates instrumented. The dependent variable in columns (1)-(3) and (5)-(6) is the log of gross yearly income.
In column (4) it is the share of the adults in the household that has a bachelor’s degree or higher. Household controls include
household size, mean age of adults, mean gender, household type (couple, single, kids), the share of the household that is foreign-
born. Job controls are the total hours worked, whether the household has a company car, the share of full-time contracts, the
share of permanent contracts. Housing controls include house type, height of the building, construction year dummies and
whether a building is listed. Standard errors are clustered at the neighborhood level and in parentheses. *** p < 0.01, **
p < 0.05, * p < 0.10
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Appendix figures

(a) Distance and travel time (b) Commuting time distribution

Figure B.1 – Calculation of travel time and speed

(a) Built-up land (b) The railway network and accessibility

Figure B.2 – Historic data from 1900
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(a) Incomes (b) Land prices

Figure B.3 – Histograms for the variables of interest

(a) Average gross income (in e) (b) Average land prices per m2 (in e)
Figure B.4 – Spatial distribution of variables of interest
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